
Open Visualisation Framework

Feb 26, 2019

Overview

1 Basic Concepts 3
1.1 Runtime environment . 4
1.2 Communication between components . 4

1.2.1 Managing sections . 4
1.2.2 Managing state . 4

1.3 High availability of server-side application components . 4

2 Installing OVE 5
2.1 Installation by running OVE installers . 5

2.1.1 Prerequisites . 5
2.1.2 Downloading the OVE installers . 5
2.1.3 Building installers for non-supported platforms . 6
2.1.4 Running the installers . 6

2.1.4.1 Resolving port conflicts . 6
2.1.4.2 Environment variables . 6
2.1.4.3 Using your own certificates for OpenVidu . 7

2.1.5 Starting and stopping the OVE Docker applications . 8
2.2 Installation from source code . 9

2.2.1 Prerequisites . 9
2.2.2 Downloading source code . 9
2.2.3 Compiling source code for a local Node.js environment . 10

2.2.3.1 Starting and stopping OVE using the PM2 process manager 10
2.2.4 Compiling source code for a Docker environment . 11

2.2.4.1 Starting and stopping the OVE Docker containers 11
2.3 Running OVE . 12

3 Using OVE 13
3.1 Setting up OVE . 13
3.2 Launching browsers . 13
3.3 Launching OVE Apps . 14

3.3.1 Launching OVE Apps using OVE UI . 14
3.3.2 Launching OVE Apps using the Python Client Library . 14
3.3.3 Launching OVE Apps using OVE Core APIs . 15

3.4 Controlling OVE Apps and designing interactive visualisations . 15

4 Potential Pitfalls 17
4.1 Technical considerations . 17

i

4.2 Ergonomic considerations . 18
4.3 User interaction considerations . 18

5 Developing OVE Applications 19
5.1 Application structure . 19
5.2 The index.html file . 20
5.3 Logging . 20
5.4 The index.js file and server-side application initialization . 20

5.4.1 The swagger-extensions.yaml file . 21
5.4.2 Server-side Helper methods . 21

5.5 Clint-side application initialization . 21
5.5.1 Resizing . 22
5.5.2 Client-side Helper methods . 22

5.6 The OVE object . 23
5.6.1 Handling state . 23
5.6.2 Interpreting geometry . 23
5.6.3 Communicating via WebSockets . 24
5.6.4 Debugging Communication via WebSockets . 24
5.6.5 Communicating within a web browser . 25

5.7 Embedding OVE within an existing web application . 25

6 Open Visualisation Environment - Apps 27

7 Alignment App 29
7.1 Loading the App . 29
7.2 Controlling the App . 29

8 Audio App 31
8.1 Application State . 31
8.2 Loading the App . 31
8.3 Controlling the App . 32

9 Charts App 33
9.1 Application State . 33
9.2 Loading the App . 33
9.3 Controlling the App . 34

10 Controller App 35
10.1 Application State . 35
10.2 Loading the App . 35
10.3 Controlling the App . 36

11 HTML App 37
11.1 Utilities . 37
11.2 Application State . 37
11.3 Loading the App . 37
11.4 Controlling the App . 38

12 Images App 39
12.1 Application State . 39
12.2 Loading the App . 39
12.3 Controlling the App . 40

13 Maps App 41
13.1 Application State . 41

ii

13.2 Designing Custom Overlays . 42
13.3 Loading the App . 43
13.4 Controlling the App . 43
13.5 Key considerations when using the App . 43

14 Networks App 45
14.1 Application State . 45
14.2 Loading the App . 46
14.3 Controlling the App . 47

15 PDF App 49
15.1 Application State . 49
15.2 Loading the App . 50
15.3 Controlling the App . 50

16 Replicator App 51
16.1 Application State . 51
16.2 Loading the App . 52

17 SVG App 53
17.1 Application State . 53
17.2 Loading the App . 53
17.3 Controlling the App . 54

18 Videos App 55
18.1 Application State . 55
18.2 Loading the App . 55
18.3 Controlling the App . 56

19 WebRTC App 57
19.1 Application State . 57
19.2 Loading the App . 57
19.3 Controlling the App . 58

20 Whiteboard App 59
20.1 Loading the App . 59
20.2 Controlling the App . 59

21 Open Visualisation Environment - Services 61

22 OVE Persistence Service - In-Memory 63
22.1 Registering a Persistence Service . 63

23 Distributed.js Library 65

24 Background Utility 67

25 MapLayers.json File 69
25.1 OpenLayers configuration format . 69

25.1.1 Using the CARTO platform with OpenLayers . 70
25.2 Leaflet configuration format . 72

25.2.1 Using the CARTO platform with Leaflet . 72

iii

iv

Open Visualisation Framework

Open Visualisation Environment (OVE) is an open-source software stack, designed to be used in large scale visuali-
sation environments. OVE was developed to meet the requirements of controlling the Data Observatory at the Data
Science Institute of Imperial College London, but it is not specialized for that purpose.

OVE can be used for visual analytics on Large High Resolution Displays, for presentations, or for collaborative group
work. It allows a user to control the display of content in web browsers distributed across multiple computers by
implementing a microservices architecture that allows the distributed execution of applications using web technologies.

The main components of OVE are OVE Core, which controls sections and the applications running within them and
OVE Apps, which provide a set of useful applications for common tasks such as displaying webpages, images or
videos and drawing graphs.

OVE Services provides core functionality microservices within OVE such as the Persistence Service, which is used
to compute absolute positions in pixels from positions expressed relative to a grid or as a percentage of the total space
size. OVE Asset Services provides an Asset Manager along with a collection of Asset Processing Services, which are
used to upload archives or divide large networks or images into tiles, and serve these to the corresponding applications.

OVE also provides user interfaces and software development kits that can be used to design and develop projects.

Overview 1

https://www.imperial.ac.uk/data-science/data-observatory/
https://www.imperial.ac.uk/data-science/
https://www.imperial.ac.uk/data-science/
https://www.imperial.ac.uk
https://github.com/ove/ove
./ove-apps/README.html
./ove-services/README.html
https://github.com/ove/ove-asset-services
https://github.com/ove/ove-ui
https://github.com/ove/ove-sdks

Open Visualisation Framework

2 Overview

CHAPTER 1

Basic Concepts

An OVE server installation supports multiple spaces. A space is a collection of monitors, which may be
attached to different computers, that together form a single display. OVE is designed to be used in Large High
Resolution Display environments; but, it is also suitable for use on much smaller displays with a single or a few
monitors.

In each space, OVE runs within a number of clients. An OVE client is a browser window and typically runs
full-screen on a single screen. A screen can span a single monitor or can span multiple monitors that are attached
to the same computer. The arrangement of clients is described in the Spaces.json file. Each client has its
own geometry which is a combination of its height, width, and 2D coordinates (x, y). The client’s geometry
is specified in pixels and it corresponds to the pixel dimensions of the screen.

Unless a scale property has been set, there must a one-to-one mapping between client pixels and screen pixels.
The optional scale property can be used to specify variable client pixel to screen pixel mappings. The scale
property accepts either one or two values, similar to the CSS scale() function.

An OVE application (or app) includes server-side and client-side components. Each of the OVE Apps confirm to
a common structure and provide a way to display a distinct form of commonly used content (subject to the limitations
described in the list of pitfalls to avoid).

Each individual instance of an OVE app is designed to run within its own section. Sections may span
multiple clients and can overlap. Sections are rectangular regions within an oveCanvas. Each section
has its own geometry which is a combination of its height, width, and 2D coordinates (x, y). The geometry
describes the region on which a section is deployed on an oveCanvas. An oveCanvas can also have groups
of one or more sections and groups.

Each individual OVE app can have its own configuration (or config) defined within a config.json.
The config is used to define named states other app-specific configuration, which are common to all app
instances. Each individual instance of an OVE app can have its own state (which can be accessed us-
ing APIs exposed by each app).

Each OVE section does not have a background colour, and a wide majority of the apps have transparent back-
grounds making it possible to overlay content from one app above another. This for example, makes it possible to
use the HTML App to display a legend for a chart or a network. All OVE apps also accept an opacity property (at
creation time or when updated), making it possible to control the opacity of overlapping content.

3

https://github.com/ove/ove/blob/master/packages/ove-core/src/client/Spaces.json
https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/scale#Syntax

Open Visualisation Framework

1.1 Runtime environment

Each OVE client displays the view page of OVE core. When a section is created, a corresponding iframe is
created within each client that it is associated with. The view of the corresponding app is loaded into this iframe.

In addition to these views, apps may present a control page that can be accessed directly through a web browser; this
controller can communicate with the views running in clients using WebSockets.

When the iframe representing a section is created, its margin CSS property is used to position it correctly, and
the window.ove.geometry object is set so that each instance of an app running within each iframe can
determine what to display.

1.2 Communication between components

In these diagrams, requests labelled GET and POST are HTTP requests; other messages are sent using WebSockets.

1.2.1 Managing sections

1.2.2 Managing state

1.3 High availability of server-side application components

OVE provides a Persistence Service which can be used to replicate server-side state among peers. This service can
be registered with OVE core or any OVE application as explained in the documentation. OVE core also accepts
registration of peer nodes using the http://OVE_CORE_HOST:PORT/peers API method. Once registered
OVE peers will cross-post messages that are broadcasted using WebSockets.

4 Chapter 1. Basic Concepts

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

CHAPTER 2

Installing OVE

OVE needs to be installed before it can be used to control a display. OVE can be installed either by downloading and
compiling the source code of the corresponding components or by running a specific installer available on the OVE
Install repository.

All contributors to OVE are encouraged to download and compile the source code. All users of OVE are encouraged
to use the OVE installers.

2.1 Installation by running OVE installers

OVE Install scripts are designed to install OVE into a Docker environment.

2.1.1 Prerequisites

• Docker

• Docker Compose

Building installers for non-supported platforms also requires:

• git

• Python

2.1.2 Downloading the OVE installers

The OVE Install scripts are available for Linux, Mac (OS X) and Windows operating systems either as a Python 3 or
a Python 2 executable application:

• linux-python3-v0.3.3-setup

• linux-python2-v0.3.3-setup

• osx-python3-v0.3.3-setup

5

https://github.com/ove/ove-install/
https://github.com/ove/ove-install/
https://github.com/ove/ove-install/
https://www.docker.com/get-started
https://www.docker.com/get-started
https://docs.docker.com/compose/install/
https://git-scm.com/downloads
https://www.python.org/
https://github.com/ove/ove-install/
https://github.com/ove/ove-install/releases/download/v0.3.3/linux-python2-v0.3.3-setup
https://github.com/ove/ove-install/releases/download/v0.3.3/linux-python2-v0.3.3-setup
https://github.com/ove/ove-install/releases/download/v0.3.3/osx-python3-v0.3.3-setup

Open Visualisation Framework

• osx-python2-v0.3.3-setup

• windows-python3-v0.3.3-setup

• windows-python2-v0.3.3-setup

2.1.3 Building installers for non-supported platforms

OVE Install provides tools for building the setup script for non-supported platforms. The master branch of OVE
Install needs to be cloned in order to proceed:

git clone https://github.com/ove/ove-install
cd ove-install

Refer the guidelines on developing/building a single setup file for detailed setup instructions.

2.1.4 Running the installers

Once downloaded, the installation script may not be executable on Linux and Mac operating systems. As a resolution,
run the following command:

chmod u+x *-setup

Running the executable will start the step-by-step installation process. This will configure the details of the deployment
environment such as hostname, port numbers and environment variables.

The ports are pre-configured to a list of common defaults, but can be changed based on end-user requirements. Each
port or port-range is defined as a mapping HOST_PORT:CONTAINER_PORT. Only the host ports can be changed,
and it is important to note that container ports must not be changed.

Each installer is capable of installing the current stable, latest unstable or a previous stable version.

2.1.4.1 Resolving port conflicts

Once the docker-compose.setup.ove.yml file is generated, it is important to ensure all HOST_PORT values
defined on the docker-compose.setup.ove.yml file are not currently in use. If this is not the case, corre-
sponding HOST_PORT values need to be changed. For example, if another Tuoris instance exists on the host machine,
it is most likely that the port 7080 could be in use. In such a situation, the Tuoris HOST_PORT needs to be changed
on the docker-compose.setup.ove.yml file.

2.1.4.2 Environment variables

Please note that the references to Hostname (or IP address) noted below should not be replaced with
localhost, or the Docker hostname because these services need to be accessible from the client/browser. Please
replace it with the public hostname or IP address of the host machine. For a local installation, the
host machine refers to your own computer. For a server installation the host machine refers to the server on
which the Docker environment has been setup. The default PORT numbers for OVE core, Tuoris, OpenVidu, and other
services are provided in the Running OVE section.

Before starting up OVE you must configure the environment variables either by providing them during the installation
process or by editing the generated docker-compose.setup.ove.yml file. The environment variables that can
be configured are:

• OVE_HOST - Hostname (or IP address) + port of OVE core

6 Chapter 2. Installing OVE

https://github.com/ove/ove-install/releases/download/v0.3.3/osx-python2-v0.3.3-setup
https://github.com/ove/ove-install/releases/download/v0.3.3/windows-python3-v0.3.3-setup
https://github.com/ove/ove-install/releases/download/v0.3.3/windows-python2-v0.3.3-setup
https://github.com/ove/ove-install/
https://github.com/ove/ove-install/
https://github.com/ove/ove-install/
https://github.com/ove/ove-install/blob/master/README.md#developingbuilding-a-single-setup-file
https://github.com/fvictor/tuoris
https://github.com/fvictor/tuoris
https://github.com/fvictor/tuoris
https://openvidu.io/

Open Visualisation Framework

• TUORIS_HOST - Hostname (or IP address) + port of the Tuoris service (dependency of SVG App).

• OPENVIDU_HOST - Hostname (or IP address) + port of the OpenVidu service (dependency of WebRTC App).

• openvidu.publicurl - https:// + Hostname (or IP address) + port of the OpenVidu service (depen-
dency of WebRTC App).

• OPENVIDU_SECRET - The OpenVidu secret. Must match openvidu.secret configured below.

• openvidu.secret - The OpenVidu secret. Must match OPENVIDU_SECRET configured above.

• OVE_SPACES_JSON - This variable is optional and not defined in the docker-compose.setup.ove.
yml by default. This accepts a URL for the Spaces.json file to be used as a replacement to the default
(embedded) Spaces.json file available with OVE.

• LOG_LEVEL - This variable is optional and not defined in the docker-compose.setup.ove.yml by
default. This can have values from 0 to 6 and defaults to 5. The values correspond to:

– 0 - FATAL

– 1 - ERROR

– 2 - WARN (The recommended LOG_LEVEL for production deployments)

– 3 - INFO

– 4 - DEBUG

– 5 - TRACE

– 6 - TRACE_SERVER (Generates additional server-side TRACE logs)

• OVE_PERSISTENCE_SYNC_INTERVAL - This variable is optional and not defined in the
docker-compose.setup.ove.yml by default. This accepts an interval (in milliseconds) for syn-
chronising an instance of OVE or of an OVE application with a registered persistence service. This optional
variable can be set individually for OVE core and for all OVE applications.

• OVE_<APP_NAME_IN_UPPERCASE>_CONFIG_JSON - This variable is optional and not defined in the
docker-compose.setup.ove.yml by default. This accepts a path to an application-specific config.
json file. This optional variable is useful when application-specific configuration files are provided at alterna-
tive locations on a filesystem (such as when using Docker secrets). <APP_NAME_IN_UPPERCASE> must be
replaced with the name of the application in upper-case. For example, the corresponding environment variable
for the Networks App would be OVE_NETWORKS_CONFIG_JSON.

• OVE_MAPS_LAYERS - This variable is optional and not defined in the docker-compose.setup.ove.
yml by default. This accepts a URL of a file containing the Map layers Configuration in a JSON format and
overrides the default Map layers Configuration of the Maps App.

The OpenVidu server also accepts several other optional environment variables that are not defined in the
docker-compose.setup.ove.yml by default. These are explained in the documentation on OpenVidu server
configuration parameters.

2.1.4.3 Using your own certificates for OpenVidu

OpenVidu is a prerequisite for using the WebRTC App. OpenVidu uses secure WebSockets and uses certificates. And,
unless you provide your own certificate, it will use a self-signed certificate which will become inconvenient when
loading the WebRTC App on multiple web browsers.

You can run OpenVidu with your own certificate by first creating new Java Key Store following the OpenVidu
guide on using your own certificate. This will subsequently require the following changes in the auto generated
docker-compose.setup.ove.yml file:

2.1. Installation by running OVE installers 7

https://github.com/fvictor/tuoris
https://openvidu.io/
https://openvidu.io/
https://openvidu.io/
https://openvidu.io/
https://github.com/ove/ove/blob/master/packages/ove-core/src/client/Spaces.json
https://docs.docker.com/engine/swarm/secrets/
https://openvidu.io/
https://openvidu.io/docs/reference-docs/openvidu-server-params/
https://openvidu.io/docs/reference-docs/openvidu-server-params/
https://openvidu.io/
https://ove.readthedocs.io/en/stable/ove-apps/packages/ove-app-webrtc/README.html
https://openvidu.io/
https://ove.readthedocs.io/en/stable/ove-apps/packages/ove-app-webrtc/README.html
https://openvidu.io/
https://docs.oracle.com/en/java/javase/11/tools/keytool.html#GUID-5990A2E4-78E3-47B7-AE75-6D1826259549__GUID-911FFF69-6916-4C69-8A93-66A13E4A239C
https://openvidu.io/docs/deployment/deploying-ubuntu/#using-your-own-certificate
https://openvidu.io/docs/deployment/deploying-ubuntu/#using-your-own-certificate

Open Visualisation Framework

version: '3.1'
services:

...

openvidu-openvidu-call:
image: openvidu/openvidu-call:latest
ports:
- "4443:4443"
environment:

openvidu.secret: "MY_SECRET"
openvidu.publicurl: "https://<Hostname (or IP address)>:4443"
server.ssl.key-store: /run/secrets/openvidu.jks
server.ssl.key-store-password: "openvidu"
server.ssl.key-alias: "openvidu"

secrets:
- openvidu.jks

...

secrets:
openvidu.jks:
file: openvidu.jks

To add a trusted CA certificate (trusted_ca.cer) to your Java Key Store, run:

keytool -import -v -trustcacerts -alias root -file trusted_ca.cer -keystore openvidu.
→˓jks -keypass openvidu

2.1.5 Starting and stopping the OVE Docker applications

OVE provides separate installation scripts to help users install the necessary components. To install and start OVE on
Docker run:

docker-compose -f docker-compose.setup.ove.yml up -d

If you wish to install OVE without it automatically starting, use the command:

docker-compose -f docker-compose.setup.ove.yml up --no-start

Once the installation procedure has completed and OVE has been started, the successful installation of OVE can be
verified by accessing the OVE home page (located at: http://OVE_CORE_HOST:PORT as noted in the Running
OVE section) using a web browser.

Once the services have started, you can check their status by running:

docker ps

The ps command will list containers along with their CONTAINER_ID. Then, to check logs of an individual container,
run:

docker logs <CONTAINER_ID>

To stop the Docker application run:

docker-compose -f docker-compose.setup.ove.yml down

8 Chapter 2. Installing OVE

https://docs.oracle.com/en/java/javase/11/tools/keytool.html#GUID-5990A2E4-78E3-47B7-AE75-6D1826259549__GUID-911FFF69-6916-4C69-8A93-66A13E4A239C

Open Visualisation Framework

To clean-up the Docker runtime first stop any active instances and then run:

docker system prune
docker volume prune

2.2 Installation from source code

All OVE projects use a build system based on Lerna. Most OVE projects are based on Node.js, compiled with Babel,
and deployed on a PM2 runtime. Some OVE projects are based on Python.

2.2.1 Prerequisites

• git

• Node.js (v8.0+)

• NPM

• NPX (install with the command: npm install -global npx)

• PM2 (install with the command: npm install -global pm2)

• Lerna (install with the command: npm install -global lerna)

Compiling source code for the Docker environment also requires:

• Docker

• Docker Compose

The SVG App requires:

• Tuoris (installation instructions available on GitHub repository)

The WebRTC App requires:

• OpenVidu

2.2.2 Downloading source code

All OVE projects can be downloaded from their GitHub repositories:

• OVE Core: master | releases

• OVE Apps: master | releases

• OVE Services: master | releases

• OVE Asset Services: master | releases

The master branch of each repository contains the latest code, and can also be cloned if you intend to contribute
code or fix issues:

git clone https://github.com/ove/ove

Once the source code has been downloaded OVE can be installed either on a local Node.js environment (such as PM2’s
Node.js environment) or within a Docker environment. The two approaches are explained below.

2.2. Installation from source code 9

https://lernajs.io/
https://nodejs.org/en/
http://babeljs.io/
http://pm2.keymetrics.io/
https://www.python.org/
https://git-scm.com/downloads
https://nodejs.org/en/
https://www.npmjs.com/
https://www.npmjs.com/package/npx
http://pm2.keymetrics.io/
https://lernajs.io/
https://www.docker.com/get-started
https://docs.docker.com/compose/install/
https://github.com/fvictor/tuoris
https://openvidu.io/
https://github.com/ove/ove
https://github.com/ove/ove/releases
https://github.com/ove/ove-apps
https://github.com/ove/ove-apps/releases
https://github.com/ove/ove-services
https://github.com/ove/ove-services/releases
https://github.com/ove/ove-asset-services
https://github.com/ove/ove-asset-services/releases

Open Visualisation Framework

2.2.3 Compiling source code for a local Node.js environment

Once you have cloned or downloaded the code, OVE can be compiled using the Lerna build system:

cd ove
lerna bootstrap --hoist
lerna run clean
lerna run build
lerna run test

Instructions above are only provided for the OVE Core repository. The steps to follow are similar for other reposito-
ries.

2.2.3.1 Starting and stopping OVE using the PM2 process manager

The SVG App requires an instance of Tuoris to be available before starting it. To start Tuoris run:

pm2 start index.js -f -n "tuoris" -- -p PORT -i 1

The WebRTC App requires an instance of OpenVidu to be available before starting it. To start OpenVidu run:

docker run -p 4443:4443 --rm -e openvidu.secret=MY_SECRET openvidu/openvidu-
→˓call:latest

OVE can then be started using the PM2 process manager. To start OVE on a Linux or MacOS environment run:

OVE_HOST="OVE_CORE_HOST:PORT" TUORIS_HOST="TUORIS_HOST:PORT" OPENVIDU_HOST="OPENVIDU_
→˓HOST:PORT" pm2 start pm2.json

To start OVE on a Windows environment run:

OVE_HOST="OVE_CORE_HOST:PORT" TUORIS_HOST="TUORIS_HOST:PORT" OPENVIDU_HOST="OPENVIDU_
→˓HOST:PORT" pm2 start pm2-windows.json

By default, OVE core and all services run on localhost, which should be used in place of OVE_CORE_HOST and
TUORIS_HOST names above. The default PORT numbers for OVE core, Tuoris and OpenVidu are provided in the
Running OVE section.

Once the services have started, you can check their status by running:

pm2 status

Then, to check logs of all services, run:

pm2 logs

To stop OVE processes managed by PM2 on a Linux or MacOS environment run:

pm2 stop pm2.json

To stop OVE processes managed by PM2 on a Windows environment run:

pm2 stop pm2-windows.json

To clean-up processes managed by PM2 on a Linux or MacOS environment run:

10 Chapter 2. Installing OVE

https://lernajs.io/
https://github.com/ove/ove
https://github.com/fvictor/tuoris
https://github.com/fvictor/tuoris
https://openvidu.io/
https://openvidu.io/
https://github.com/fvictor/tuoris
https://openvidu.io/

Open Visualisation Framework

pm2 delete pm2.json

To clean-up processes managed by PM2 on a Windows environment run:

pm2 delete pm2-windows.json

2.2.4 Compiling source code for a Docker environment

This approach currently works only for Linux and MacOS environments. The build.sh script corresponding to each
repository can be found under the top most directory of the cloned or downloaded repository or within a packages/
PACKAGE_NAME directory corresponding to each package.

The build.sh script can be executed as:

cd ove
./build.sh

Instructions above are only provided for the OVE Core repository. The steps to follow are similar for other reposito-
ries.

2.2.4.1 Starting and stopping the OVE Docker containers

Similar to the build.sh script, the docker-compose.yml file corresponding to each repository can also be
found under the top most directory of the cloned or downloaded repository or within a packages/PACKAGE_NAME
directory corresponding to each package.

The deployment environment needs to be pre-configured before running these scripts.

To start each individual docker container run:

SERVICE_VERSION="latest" docker-compose -f docker-compose.yml up -d

Once the services have started, you can check their status by running:

docker ps

The ps command will list containers along with their CONTAINER_ID. Then, to check logs of an individual container,
run:

docker logs <CONTAINER_ID>

To stop each individual Docker container run:

SERVICE_VERSION="latest" docker-compose -f docker-compose.yml down

To clean-up the Docker runtime first stop any active instances and then run:

docker system prune
docker volume prune

2.2. Installation from source code 11

https://github.com/ove/ove

Open Visualisation Framework

2.3 Running OVE

It is recommended to use OVE with Google Chrome, as this is the web browser used for development and in production
at the Data Science Institute. However, it should also be compatible with other modern web browsers: if you encounter
any browser-specific bugs please report them as an Issue.

For details of how to use OVE, see the Usage page.

After installation, OVE will expose several resources that can be accessed through a web browser:

• OVE home page http://OVE_CORE_HOST:PORT

• App control page http://OVE_APP_HOST:PORT/control.html?oveSectionId=0

• OVE client pages http://OVE_CORE_HOST:PORT/view.html?oveViewId=LocalNine-0

– (check Spaces.json for more information)

• OVE JS library http://OVE_CORE_HOST:PORT/ove.js

• OVE API docs http://OVE_CORE_HOST:PORT/api-docs

By default, OVE core, all apps, and all services run on localhost, which should be used in place of
OVE_CORE_HOST and OVE_APP_HOST names above. The default PORT numbers are:

• 8080 - OVE Core

• 8081 - OVE App Maps

• 8082 - OVE App Images

• 8083 - OVE App HTML

• 8084 - OVE App Videos

• 8085 - OVE App Networks

• 8086 - OVE App Charts

• 8087 - OVE App Alignment

• 8088 - OVE App Audio

• 8089 - OVE App SVG

• 8090 - OVE App Whiteboard

• 8091 - OVE App PDF

• 8092 - OVE App Controller

• 8093 - OVE App Replicator

• 8094 - OVE App WebRTC

• 8180 - OVE Service Layout

• 8190 - OVE Service Persistence (In-Memory)

The default PORT numbers of OVE dependencies are:

• 7080 - Tuoris

• 4443 - OpenVidu

12 Chapter 2. Installing OVE

http://www.imperial.ac.uk/data-science/
https://github.com/ove/ove-apps/issues
https://github.com/ove/ove/blob/master/packages/ove-core/src/client/Spaces.json
https://github.com/fvictor/tuoris
https://openvidu.io/

CHAPTER 3

Using OVE

There are several steps that must be performed in order to use OVE to control a display.

Before using OVE, you will need to install OVE Core, any OVE Apps, and any OVE Services that you intend to use.
Installation guidelines can be found in the OVE Installation Guide. As a part of the installation, you must ensure that
the OVE core server, and all OVE apps, are accessible from the computers connected to the monitors that will be used
in the display.

3.1 Setting up OVE

By default, OVE provides two spaces, that are useful for trying out some of the OVE Apps with sample content.
These are:

• LocalNine - This space contains nine clients arranged in 3 x 3 configuration. Each client has a
dimension of 1440 x 808 pixels and the total space has a dimension of 4320 x 2424 pixels.

• LocalFour - This space contains four clients arranged in 2 x 2 configuration. Each client has a
dimension of 1440 x 808 pixels and the total space has a dimension of 2880 x 1616 pixels.

You will need to modify the Spaces.json file and introduce a new space in OVE, before it can be used.

3.2 Launching browsers

In order to use OVE, you will need to open the URL of each client in a separate web browser window (or tab). Each
URL has the form: http://OVE_CORE_HOST:PORT/view.html?oveViewId={SPACE}-{ID}. These
URLs can also be found on the http://OVE_CORE_HOST:PORT page. The values for OVE_CORE_HOST and
PORT must be set as explained in the OVE Installation Guide. The value for SPACE would be the name of the space
used, such as LocalNine, LocalFour, or a name of a new space that has been defined in the Spaces.json file.
The value for ID is the index of the client associated with the browser window, in the definition of the space in
Spaces.json file. Not providing the oveViewId or providing the oveViewId in an invalid format would result
in OVE printing either the Name of space not provided or the Client id not provided warning on
the browser console.

13

https://github.com/ove/ove
../ove-apps/README.html
../ove-services/README.html
../ove-apps/README.html
https://github.com/ove/ove/blob/master/packages/ove-core/src/client/Spaces.json
https://github.com/ove/ove/blob/master/packages/ove-core/src/client/Spaces.json
https://github.com/ove/ove/blob/master/packages/ove-core/src/client/Spaces.json

Open Visualisation Framework

It is recommended to use OVE with Google Chrome, as this is the web browser used for development and in production
at the Data Science Institute. However, OVE should also be compatible with other modern web browsers: if you
encounter any browser-specific bugs please report them as an Issue.

To test OVE functionality, you can simply open four web browser windows (or tabs) with the following URLs corre-
sponding to the LocalFour space:

http://OVE_CORE_HOST:PORT/view.html?oveViewId=LocalFour-0
http://OVE_CORE_HOST:PORT/view.html?oveViewId=LocalFour-1
http://OVE_CORE_HOST:PORT/view.html?oveViewId=LocalFour-2
http://OVE_CORE_HOST:PORT/view.html?oveViewId=LocalFour-3

However, in a much larger OVE installation with many monitors, opening browser windows may be sufficiently time-
consuming for automation to be worthwhile.

On Windows, a PowerShell script can be used to launch full-screen browsers with the correct URLs. On Linux, a Bash
script can be used. On MacOS, either Bash or AppleScript could be used.

3.3 Launching OVE Apps

OVE provides three different ways of launching apps into an OVE environment:

• Using OVE UI

• Using OVE SDKs

• Using OVE Core APIs

The OVE UI is designed to be used by the most basic users of OVE. The OVE Core APIs are intended to be used by
the most advanced users of OVE.

Given below are instructions on how to load sample content using the Images App. A complete list of all apps and
similar instructions on how to use them can be found in the OVE Apps repository.

3.3.1 Launching OVE Apps using OVE UI

The OVE UI is still work in progress.

3.3.2 Launching OVE Apps using the Python Client Library

The Python Client Library is one of the SDKs provided by OVE, which can be installed separately by following the
instructions available on its GitHub repository.

To launch the Images App with a sample image, in the LocalNine space, run:

from ove.config import local_space as space

space.enable_online_mode()

space.delete_sections()

image = space.add_section(w=4320, h=2424, x=0, y=0, app_type='images')
image.set_url("https://farm4.staticflickr.com/3107/2431422903_632ce51b56_o_d.jpg",
→˓"shelley")

14 Chapter 3. Using OVE

http://www.imperial.ac.uk/data-science/
https://github.com/ove/ove-apps/issues
https://docs.microsoft.com/en-us/powershell/scripting/powershell-scripting
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
https://github.com/ove/ove-ui
https://github.com/ove/ove-sdks
https://github.com/ove/ove
https://github.com/ove/ove-ui
https://github.com/ove/ove
../ove-apps/README.html
https://github.com/ove/ove-ui
https://github.com/ove/ove-sdks/tree/master/python
https://github.com/ove/ove-sdks/blob/master/python/README.md#installation

Open Visualisation Framework

3.3.3 Launching OVE Apps using OVE Core APIs

OVE provides a number of useful APIs that can be used to launch applications and load content. The complete list of
APIs provided by OVE Core is documented at: http://OVE_CORE_HOST:PORT/api-docs.

The APIs for OVE core, all apps, and all services are documented using Swagger, and it is possible to directly in-
voke them from within the API documentation page (http://OVE_CORE_HOST:PORT/api-docs) using a web
browser. Alternatively, a standalone tool such as curl can be used.

An image can be loaded into the LocalFour space using the OVE APIs, by running the following commands using
curl.

Linux/Mac:

curl --header "Content-Type: application/json" --request DELETE http://OVE_CORE_
→˓HOST:PORT/sections
curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_IMAGES_HOST:PORT","states": {"load": {"tileSources": "https://
→˓openseadragon.github.io/example-images/highsmith/highsmith.dzi"}}}, "space":
→˓"LocalFour", "h": 500, "w": 500, "y": 0, "x": 0}' http://OVE_CORE_HOST:PORT/section

Windows:

curl --header "Content-Type: application/json" --request DELETE http://OVE_CORE_
→˓HOST:PORT/sections
curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_IMAGES_HOST:PORT\", \"states\": {\"load\": {\"tileSources\
→˓": \"https://openseadragon.github.io/example-images/highsmith/highsmith.dzi\"}}}, \
→˓"space\": \"LocalFour\", \"h\": 500, \"w\": 500, \"y\": 0, \"x\": 0}" http://OVE_
→˓CORE_HOST:PORT/section

These commands clear all sections on OVE, and create a new section containing an instance of the Images App. In
this example we are loading a Deep Zoom image.

The OVE core APIs can be used for various other purposes such as grouping sections together, transforming section
dimensions by translating and scaling, or for moving sections from one space to another. APIs exposed by OVE apps
can be used to set, update or flush application state and to obtain differences between states or to transform from one
state to another using pan and zoom operations. A catalogue of all available APIs for OVE core and all active apps is
available at http://OVE_CORE_HOST:PORT.

3.4 Controlling OVE Apps and designing interactive visualisations

Once an App has been loaded into an OVE space it can be controlled using the corresponding controller, which
provides app-specific functionality. For example, the controller of the Images App supports panning and zoom-
ing of images that have been loaded. The controller can be loaded into a separate browser window by accessing
the URL http://OVE_APP_IMAGES_HOST:PORT/control.html?oveSectionId=0. Not providing the
oveSectionId would result in OVE printing the Section id not provided warning on the browser con-
sole.

A common practice when designing projects with interactive visualisations is to create a custom launcher application
that is capable of making API calls. Such applications are usually designed to run on web browsers and invoke the
OVE Core API using JavaScript code. These applications provide a single-click (or single-touch) experience for
launching and controlling OVE apps.

When designing content to be displayed in an OVE environment, please also be aware of the potential pitfalls.

3.4. Controlling OVE Apps and designing interactive visualisations 15

https://github.com/ove/ove
https://swagger.io/solutions/api-documentation/
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc645077(v=vs.95)
https://github.com/ove/ove

Open Visualisation Framework

16 Chapter 3. Using OVE

CHAPTER 4

Potential Pitfalls

There are several potential pitfalls that you should be aware of when developing visualisation applications and con-
tent that will be displayed using OVE. Larger displays (in either physical dimensions or resolution) present more
challenges, and some of these pitfalls are less of a concern for an OVE installation of a smaller scale.

4.1 Technical considerations

Deterministic geometry and rendering. If a section spans multiple clients, you should ensure that each client renders
its part of the section in a way that is consistent with the other clients. For example, if a word-cloud is drawn using
a random algorithm that is performed independently on each client, a word may appear on more than one client, and
words that should span the boundary between two clients may only appear on one client. This applies not only to
visualizations that you create, but also to existing websites thay you may want to display: for example, the order of
items in a news-feed may change each time it is loaded, and some sites display a list of randomly selected links to
related pages.

Browser versions. You should ensure that your content displays correctly in the specific browser version used in the
OVE environment where you will be displaying your content. This may well be an older version than the version that is
installed on your development machine, as software auto-updates may have been disabled in production environments.

Custom libraries. The core OVE apps use stable libraries tested on all DSI visualization environments; if certain
features are not working or not tested, these will be stated in the app description. If you use the HTML App to embed
content that depends on third-party libraries, you should ensure that they support sufficiently high screen resolutions:
for example, chart.js stops rendering area charts at 17000 pixels (less than the horizontal width of the Data Observatory
at Imperial, which has a resolution of 30720x4320 pixels). Device emulation within Chrome may assist with this
process.

Time synchronisation. Be aware that the clocks on each machine may not be precisely synchronised and cannot be
used to time animations without taking clock drift into account.

Server scalability. If a section spans multiple OVE clients, then each may make near-simultaneous requests for the
same content (e.g., webpages in the case of the HTML App, or image tiles in the case of the Images App). You should
ensure that whatever server(s) that is deployed to serve these requests to be configured to handle the expected load.

17

https://www.imperial.ac.uk/data-science/data-observatory/

Open Visualisation Framework

Additionally, if you are loading content from a third-party service using an API, you should ensure that you will not
exceed limits on the peak request frequency (which could result in your requests being throttled or API keys revoked).

Frame options. A website can set the X-Frame-Options header to indicate that it should not be embedded in an iframe;
this will prevent it from being loaded by the HTML App. Some websites use this mechanism to disallow embedding
except for specific alternative URLs.

4.2 Ergonomic considerations

Background colours. White backgrounds may be blinding when displayed on multiple monitors. Dark or black
backgrounds will help to hide screen bezels, which can otherwise be distracting.

Content density. When designing your visualisation and content for a high resolution environment, be aware that
content that looks dense on a laptop may look very sparse and spread-out when displayed upon a large screen.

Content sizing. Ensure that your content is readable from the distance at which you expect it to be read by your
audience.

Content positioning. If presenting to a standing audience, do not rely on viewers being able to read the lower third of
the display area, and position titles high up. For large charts, it is a good practice to duplicate any chart legends so that
no part of the chart is far away from the legend. Position content to minimise the interruption of important features by
bezels.

Content flow. Think carefully about how you will arrange content. This is particularly important when using a large
immersive display, as viewers may have to turn their heads or walk across a room in order to look at a different part of
the display, rather than simply moving their eyes. A common practice is to arrange things in order from left to right,
and from top to bottom.

Animation. Animation which look reasonable on your laptop screen may become nauseating when viewed on a large
screen. To avoid this, animated motion should be slow. Sequentially zooming out, panning, and then zooming back in
can also be less nauseating than directly animating a pan in a zoomed-in view.

4.3 User interaction considerations

Controller mobility. If you intend to present to a larger audience, consider creating a control panel that can be
operated using a phone or tablet so that you can move around without being tethered to a particular location.

Multiple control panels. Be aware that it is common practice to run multiple control panels for your visualisations;
you should design your content to support this. Specifically, this means that control panels should not hold unique
state: if they hold state, this should be shared with other control panels (either by using the OVE framework’s API
endpoints to save and load state, or by communicating directly using a WebSocket). When a new control panel loads,
it should not reset the display.

18 Chapter 4. Potential Pitfalls

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe

CHAPTER 5

Developing OVE Applications

OVE provides a number of applications to display commonly-used types of content, such as HTML, tiled images,
audio and video files, maps, networks, and charts. The HTML App is particularly flexible, and allows the hosting of
general HTML/JavaScript web applications. However, if existing applications do not meet your needs then you can
write a new OVE app.

@ove-lib/appbase provides a base library on which OVE applications can be built.

5.1 Application structure

An application typically has the structure:

README.md
package.json
src

client
common

<app-name>.css
<app-name>.js

constants
<app-name>.js

control
<app-name>.css
<app-name>.js

index.html
view

<app-name>.css
<app-name>.js

config.json
data
swagger-extensions.yaml
index.js

19

https://www.npmjs.com/package/@ove-lib/appbase

Open Visualisation Framework

At the top level, the README.md file explains the purpose and usage of the application in human-readable form,
whereas package.json provides machine-readable information about the package (name, version, author, license),
its dependencies, and build commands.

Within src/, config.json describes any pre-configured states that are provided as examples (which may
depend on data files in src/data); src/index.js is the file that is actually run by node.js to create a server
instance. The @ove-lib/appbase base library exposes an API to interact with the app. If the application exposes
additional API methods the src/swagger-extensions.yaml is used to describe them, so that Swagger can
automatically generate documentation.

Applications are partitioned into separate a control and view, with shared parts placed in src/client/
common/ (for CSS or JavaScript functions) or src/client/constants (for JavaScript constants). A single
index.html file is shared between the control and view, but it renders different content in both cases due to the
inclusion of different JavaScript files.

The JavaScript and CSS files in control/ are used to render the application’s control page; the JavaScript and CSS
files in view/ are used to render the page that is displayed when the application is loaded into a section.

5.2 The index.html file

Before the index.html file is served, the placeholders __OVEHOST__ and __OVETYPE__ are replaced (this
replacement is specified by the registerRoutesForContent function defined in ove-lib-utils/src/
index.js). __OVEHOST__ is replaced by the host-name that was specified by the OVE_HOST environment
variable set in pm2.json (or docker-compose.yml). __OVETYPE__ is replaced by view or control.

This mechanism allows the construction of paths for the inclusion of JavaScript or CSS files.

5.3 Logging

Messages can be logged by creating a OVE.Utils.Logger object, and then calling the method with the appropriate
level (fatal, error, warn, debug, info or trace):

const log = OVE.Utils.Logger(Constants.APP_NAME, Constants.LOG_LEVEL);
log.debug('Starting application');

5.4 The index.js file and server-side application initialization

For most applications the index.js would look similar to:

const { Constants } = require('./client/constants/<app-nam>');
const { app, log } = require('@ove-lib/appbase')(__dirname, Constants.APP_NAME);
const server = require('http').createServer(app);

const port = process.env.PORT || 8080;
server.listen(port);
log.info(Constants.APP_NAME, 'application started, port:', port);

The @ove-lib/appbase base library also exposes express, nodeModules and config. These can be used
to register express routes, to expose nodule modules or to access application-specific configuration found in the
config.json file. To expose a node module from your application:

20 Chapter 5. Developing OVE Applications

https://www.npmjs.com/package/@ove-lib/appbase
https://swagger.io/solutions/api-documentation/
https://github.com/ove/ove/blob/5661ed9447c83aaa8ecb4d767172145d876654a3/packages/ove-lib-utils/src/index.js#L125
https://github.com/ove/ove/blob/5661ed9447c83aaa8ecb4d767172145d876654a3/packages/ove-lib-utils/src/index.js#L125
https://www.npmjs.com/package/@ove-lib/appbase

Open Visualisation Framework

const { express, app, log, nodeModules } = require('@ove-lib/appbase')(__dirname,
→˓Constants.APP_NAME);
const path = require('path');

log.debug('Using module:', '<module-name>');
app.use('/', express.static(path.join(nodeModules, '<module-name>', '<module-
→˓directory>')));

5.4.1 The swagger-extensions.yaml file

The swagger-extensions.yaml is optional and only found in applications exposing REST API methods. Con-
tents of this file include definitions of Paths and Tags objects according to the Swagger 2.0 Specification.

5.4.2 Server-side Helper methods

OVE Utils provides a number of useful methods, such as Utils.getOVEHost(), Utils.
sendMessage(res, status, message), Utils.sendEmptySuccess(res), Utils.
getSafeSocket(socket), and Utils.isNullOrEmpty(value). To make use of OVE Utils from your
application to communicate with other OVE components using WebSockets:

const { log, Utils } = require('@ove-lib/appbase')(__dirname, Constants.APP_NAME);

let ws;
const getSocket = function () {

const socketURL = 'ws://' + Utils.getOVEHost();
log.debug('Establishing WebSocket connection with:', socketURL);
let socket = new (require('ws'))(socketURL);
socket.on('error', log.error);
socket.on('close', function (code) {

log.warn('Lost websocket connection: closed with code:', code);
log.warn('Attempting to reconnect in ' + Constants.SOCKET_REFRESH_DELAY + 'ms

→˓');
// If the socket is closed, we try to refresh it.
setTimeout(getSocket, Constants.SOCKET_REFRESH_DELAY);

});
ws = Utils.getSafeSocket(socket);

};
getSocket();

ws.safeSend(JSON.stringify({ appId: Constants.APP_NAME, message: message }));

5.5 Clint-side application initialization

On document load, you should create a new OVE object attached to the window object of the web browser:

window.ove = new OVE(Constants.APP_NAME);
// perform initialization
window.ove.context.isInitialized = true;

As part of initialization, you should call OVE.Utils.initControl or OVE.Utils.initView:

5.5. Clint-side application initialization 21

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#pathsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#tagObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

Open Visualisation Framework

const initControl = function (data) {
// perform further initialization.

}
OVE.Utils.initControl(Constants.DEFAULT_STATE_NAME, initControl);

OVE.Utils.initControl accepts a function to perform any further initialization that will be called once OVE
initializes the controller of the app. It also accepts the name of the default state to be loaded as a part of the
initialization process.

const initView = function () {
// perform initialization before OVE loads the viewer.

}
const onStateLoaded = function () {

// called immediately after the state is loaded.
}
OVE.Utils.initView(initView, onStateLoaded);

OVE.Utils.initView accepts a function to perform initialization before OVE initializes the viewer of the app.
Unlike the controller, the viewer needs to be pre-initialized. This is to ensure JavaScript libraries are appropriately
initialized before the application state is loaded. OVE.Utils.initView also accepts a function that gets called
immediately after the state is loaded to the viewer.

If there are any further initialization that needs to be done after OVE initializes the viewer of the app, OVE.Utils.
initView also accepts an optional function as its third parameter:

const postInitView = function () {
// perform further initialization.

}
OVE.Utils.initView(initView, onStateLoaded, postInitView);

You should also ensure that page elements have been resized appropriately.

5.5.1 Resizing

OVE.Utils provides two methods for automatically resizing a <div> element. OVE.Utils.
resizeController(contentDivName) scales the element with id contentDivName to fit in-
side both the client and window, whilst maintaining the aspect ratio of the section/content; OVE.Utils.
resizeViewer(contentDivName) resizes the element with id contentDivName to the size of the
corresponding section (which may span multiple clients), and then translated based on the client’s coordinates.

5.5.2 Client-side Helper methods

OVE.Utils provides a number of useful methods, such as OVE.Utils.getQueryParam(name,
defaultValue), OVE.Utils.getURLQueryParam(), OVE.Utils.getSpace(), OVE.Utils.
getClient(), OVE.Utils.getViewId() and OVE.Utils.getSectionId().

OVE.Utils.Coordinates.transform(vector, inputType, outputType) provides a mechanism
to convert coordinates of one format to another. The input and output types can be one of OVE.Utils.
Coordinates.SCREEN, OVE.Utils.Coordinates.SECTION or OVE.Utils.Coordinates.SPACE:

// Get location of mouse pointer within the space.
function onMouseEvent(event) {

const spaceCoordinates = OVE.Utils.Coordinates.transform(

(continues on next page)

22 Chapter 5. Developing OVE Applications

Open Visualisation Framework

(continued from previous page)

[event.screenX, event.screenY], OVE.Utils.Coordinates.SCREEN, OVE.Utils.
→˓Coordinates.SPACE);
}

5.6 The OVE object

The OVE object (window.ove) provides a number of useful functions and data structures to handle state, to interpret
geometry and to communicate via WebSockets. It also provides a context (window.ove.context) to hold the
application’s local variables. The window.ove.context.uuid property provides a unique identifier for each
instance of OVE. This can be used to uniquely identify each viewer and controller in the system. The window.ove.
context.hostname property provides the hostname of the ove.js library.

5.6.1 Handling state

The window.ove.state object provides a window.ove.state.current data structure to hold the current
application state. You can decide what this should contain, given the particular needs of your application.

The current application state (contents of window.ove.state.current) can be sent as a WebSocket broadcast
by calling OVE.Utils.broadcastState() (with no arguments). This will update the current state on all clients
that receive the message; you can register a callback function to be called when this change occurs using OVE.
Utils.setOnStateUpdate(callbackFunctionName).

The window.ove.state object also provides two other methods cache and load, which can be used to cache
the application state on the server and load it sometime later. These methods are internally called by the utility methods
provided by OVE.Utils and therefore their use is limited to a few advanced use-cases.

5.6.2 Interpreting geometry

The window.ove.geometry provides information useful to interpret the geometry of the clients:

• window.ove.geometry.x - Displacement along the x-axis relative to the top-left of the section in pixels

• window.ove.geometry.y - Displacement along the y-axis relative to the top-left of the section in pixels

• window.ove.geometry.w - Width of the client

• window.ove.geometry.h - Height of the client

• window.ove.geometry.section.w - Width of the section (or the total width of the application)

• window.ove.geometry.section.h - Height of the section (or the total height of the application)

• window.ove.geometry.space.w - Width of the space (or the total width of all clients)

• window.ove.geometry.space.h - Height of the space (or the total height of all clients)

• window.ove.geometry.offset.x - Displacement of top-left of the client along the x-axis relative to the
top-left of the browser window in pixels

• window.ove.geometry.offset.y - Displacement of top-left of the client along the y-axis relative to the
top-left of the browser window in pixels

While all of this information is available on a fully initialized viewer, the controller only has:

• window.ove.geometry.section.w - Width of the section (or the total width of the application)

• window.ove.geometry.section.h - Height of the section (or the total height of the application)

5.6. The OVE object 23

Open Visualisation Framework

5.6.3 Communicating via WebSockets

The window.ove.socket provides two functions send and on to send and receive messages using WebSockets:

window.ove.socket.on(function (message) {
// logic to interpret the message

});
window.ove.socket.send(message);

The message argument represents a JSON serializable object in both methods. These methods are particularly useful
to trigger remote operations or to expose JavaScript functionality using REST APIs. They can also be used to develop
controllers that support interactive operations such as linking and brushing, across a number of different application
instances or types. The tool used for Debugging Communication via WebSockets is a good example on how to use
these methods to develop an external controller.

5.6.4 Debugging Communication via WebSockets

OVE provides a tool to debug communications via WebSockets. This tool can be obtained either by downloading it
(right-click this link and select Save as) or by cloning the source code.

git clone https://github.com/ove/ove
cd ove/packages/ove-core/tools/debug-socket

To access the browser-based tool you will also need to start a web-server. This can be done using one of the approaches
shown below.

Node.js:

npm install http-server -g
http-server

Python 2:

python -m SimpleHTTPServer 9999

Python 3:

python3 -m http.server 9999

Please note that you may need to specify a port number if you have chosen to use Python and the default of port 8000
is already in use (the examples above specify 9999 as the port to use).

Once the application is launched it will be available at the any of the URLs printed on the console, if you have chosen
to use Node.js or at http://localhost:8000 (or corresponding port number), if you have chosen to use Python.

If the tool prompts you to provide oveHost, oveAppName and oveSectionId as query parameters, please
modify the URL and provide these parameters.

The oveHost parameter takes the form of OVE_CORE_HOST:PORT. The oveAppName parameter is the name of
the application you are interested in debugging, such as maps, images or html (which by convention is always in
lower case). The name of the application can also be obtained via the http://OVE_APP_HOST:PORT/name API.
The oveSectionId is the identifier of the section in which the application is currently deployed in. This identifier
is used when accessing the application’s control page or when working with OVE APIs to manage sections.

If the tool has been accessed with the correct parameters, you should see a text box along with a Send button. The
contents of the text box should automatically change when you perform any operation on the application that you are
currently debugging. You can modify the contents of the text-box and press the Send button to control the application
from within the tool.

24 Chapter 5. Developing OVE Applications

https://link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_1129
https://raw.githubusercontent.com/ove/ove/master/packages/ove-core/tools/debug-socket/index.html

Open Visualisation Framework

5.6.5 Communicating within a web browser

The window.ove.frame provides two functions send and on to send and receive messages within a web browser:

window.ove.frame.on(function (message) {
// logic to interpret the message

});
window.ove.frame.send(target, message, appId);

The message argument represents a JSON serializable object in both methods. The target argument can be one
of Constants.Frame.PEER or Constants.Frame.CHILD, and the optional appId argument identifies the
target application. If window.ove.frame.on has not been set, all messages would be received by window.ove.
socket.on. These methods can be used to develop controllers that support interactive operations such as linking
and brushing, across a number of different application instances or types.

5.7 Embedding OVE within an existing web application

Each OVE client can be deployed in its own iFrame and embedded into an existing web application. This approach
has been used in the Whiteboard App and the Replicator App. OVE also supports a number of useful properties that
can be passed into the iFrame of each client. The filters property accepts an includeOnly or exclude
child-property that can be used to specifically include or exclude sections from being displayed within a client.
Each OVE client has a dark grey background, which can be set to none using the transparentBackground
property. The load property can be set to forcefully reload the contents of a client.

These properties can be passed into all client iFrames as a message sent to the core application, as noted below:

window.ove.frame.send(
Constants.Frame.CHILD,
{

load: true,
transparentBackground: true,
filters: { includeOnly: [0, 1] }

},
'core');

5.7. Embedding OVE within an existing web application 25

https://link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_1129
https://link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_1129

Open Visualisation Framework

26 Chapter 5. Developing OVE Applications

CHAPTER 6

Open Visualisation Environment - Apps

There are several applications designed to run within Open Visualisation Environment (OVE):

• Alignment - helps align the monitors in an OVE installation.

• Audio - supports the playing of audio files within the OVE Framework.

• Charts - supports visualisation of charts using the OVE framework.

• Controller - a unified controller for all OVE apps

• HTML - supports displaying HTML web pages using the OVE framework.

• Images - supports the display of images using the OVE framework.

• Maps - supports visualisation of dynamic maps using the OVE framework.

• Networks - supports visualisation of networks with node-link diagrams using the OVE framework.

• PDF - supports displaying PDF documents using the OVE framework.

• Replicator - replicating content of an OVE installation.

• SVG - supports rendering SVG using the OVE framework.

• Videos - supports playing videos using the OVE framework.

• WebRTC - supports videoconferencing and screen sharing using the OVE framework.

• Whiteboard - creates a whiteboard that can be used within the OVE framework.

OVE needs to be installed before using OVE apps. The OVE Documentation provides installation instructions and a
user guide.

27

https://github.com/ove/ove
https://ove.readthedocs.io/en/stable/
https://ove.readthedocs.io/en/stable/docs/INSTALLATION.html
https://ove.readthedocs.io/en/stable/docs/USAGE.html

Open Visualisation Framework

28 Chapter 6. Open Visualisation Environment - Apps

CHAPTER 7

Alignment App

This app exists to help align the monitors in an OVE installation.

When installing monitors to create a tiled display, the aim is typically to physically align screens with as little gap
between them as possible. However, in practice it is difficult to achieve a perfect alignment and monitors have bezels
with non-zero widths. To compensate for this, adjustments can be made to the coordinates recorded for the geometry
in the Spaces.json file.

7.1 Loading the App

The alignment app can be loaded using the OVE APIs:

Linux/Mac:

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_ALIGNMENT_HOST:PORT"}, "space": "OVE_SPACE", "h": 500, "w": 500, "y
→˓": 0, "x": 0}' http://OVE_CORE_HOST:PORT/section

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_ALIGNMENT_HOST:PORT\"}, \"space\": \"OVE_SPACE\", \"h\":
→˓500, \"w\": 500, \"y\": 0, \"x\": 0}" http://OVE_CORE_HOST:PORT/section

7.2 Controlling the App

The controller of the app can be loaded by accessing the URL http://OVE_APP_ALIGNMENT_HOST:PORT/
control.html?oveSectionId=SECTION_ID&oveSpace=SPACE_NAME.

The app enables the display of one of two patterns (a grid of vertical and horizontal lines, or a series of parallel
diagonal lines) that span an entire oveCanvas. From the controller page, a user can select one or more OVE clients,

29

Open Visualisation Framework

use the arrow keys to move the pattern on these clients until it aligns with the others, and then export a modified
Spaces.json file.

The grid pattern allows creation of an alignment such that bezels are ignored: are pixels of the content are displayed,
and the bottom pixel of one monitor and the top pixel of the monitor below have adjacent image coordinates, but are
physically separated by the bezel width.

The diagonal pattern allows the creation of an alignment that compensates for bezels: the bottom pixel of one monitor
and the top pixel of the monitor below do not have adjacent image coordinates; instead, content will be displayed as if
it was on a continuous surface behind the bezels, with bezels occluding some content.

Users may want to perform both alignment procedures, and save the results as separate configurations in Spaces.
json.

30 Chapter 7. Alignment App

CHAPTER 8

Audio App

This app supports the playing of audio files within the OVE Framework. It is powered by the Howler.js audio library,
so supports the Web Audio API by default and falls back to HTML5 Audio if required. This app is intended to provide
a distributed layer on top of the Howler Library.

The Audio App does not display any visible content and will, by default, play audio on all browsers a section covers.
You may select where within the section the audio plays by using the setPosition method (implementation pending
blocker). Currently supported Audio files include webm, mp3 and sound.wav.

8.1 Application State

The state of this app has a format similar to:

{
"url": "https://upload.wikimedia.org/wikipedia/commons/b/bd/%22Going_Home%22%2C_

→˓performed_by_the_United_States_Air_Force_Band.oga"
}

8.2 Loading the App

An audio file can be loaded using the OVE APIs:

Linux/Mac:

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_AUDIO_HOST:PORT","states": {"load": {"url": "https://upload.
→˓wikimedia.org/wikipedia/commons/b/bd/%22Going_Home%22%2C_performed_by_the_United_
→˓States_Air_Force_Band.oga"}}}, "space": "OVE_SPACE", "h": 500, "w": 500, "y": 0, "x
→˓": 0}' http://OVE_CORE_HOST:PORT/section

Windows:

31

https://github.com/ove/ove-apps/issues/33

Open Visualisation Framework

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_AUDIO_HOST:PORT\", \"states\": {\"load\": {\"url\": \
→˓"https://upload.wikimedia.org/wikipedia/commons/b/bd/%22Going_Home%22%2C_performed_
→˓by_the_United_States_Air_Force_Band.oga\"}}}, \"space\": \"OVE_SPACE\", \"h\": 500,
→˓\"w\": 500, \"y\": 0, \"x\": 0}" http://OVE_CORE_HOST:PORT/section

8.3 Controlling the App

The controller of the app can be loaded by accessing the URL http://OVE_APP_AUDIO_HOST:PORT/
control.html?oveSectionId=SECTION_ID.

The app’s API also exposes operations such as play, pause, stop, seekTo and bufferStatus related to
playback. Volume may be controlled by operations such as mute, unmute, volUp, volDown. These operations
can be executed on a per-section basis or across all sections.

To play audio using OVE APIs:

curl --request POST http://OVE_APP_AUDIO_HOST:PORT/operation/play

Instructions on invoking other operations are available on the API Documentation, http://
OVE_APP_AUDIO_HOST:PORT/api-docs#operation.

32 Chapter 8. Audio App

CHAPTER 9

Charts App

This app supports visualisation of charts using the OVE framework. It is based on Vega-Embed, which provides
support for both Vega and Vega-Lite: these are both declarative languages for interactive visualizations, but Vega-Lite
is a higher level language. Vega-Embed supports Canvas and SVG rendering.

Please note that this app supports visualisation of networks, but OVE also provides a separate Networks App that is
specialised for drawing node-link diagrams.

9.1 Application State

The state of this app has a format similar to:

{
"url": "https://raw.githubusercontent.com/vega/vega/master/docs/examples/bar-

→˓chart.vg.json",
"options": {

"width": 800,
"height": 800

}
}

The url property points to a URL of a Vega-Embed specification. Alternatively, the specification be embedded in the
state using a spec property.

9.2 Loading the App

A chart can be loaded using the OVE APIs:

Linux/Mac:

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_CHARTS_HOST:PORT","states": {"load": {"url": "https://raw.
→˓githubusercontent.com/vega/vega/master/docs/examples/bar-chart.vg.json", "options":
→˓{"width": 800, "height": 800}}}}, "space": "OVE_SPACE", "h": 500, "w": 500, "y": 0,
→˓"x": 0}' http://OVE_CORE_HOST:PORT/section

(continues on next page)

33

https://github.com/vega/vega-embed
https://vega.github.io/vega/
https://vega.github.io/vega-lite/
https://vega.github.io/vega/examples/force-directed-layout/
https://vega.github.io/vega/docs/#specification

Open Visualisation Framework

(continued from previous page)

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_CHARTS_HOST:PORT\", \"states\": {\"load\": {\"url\": \
→˓"https://raw.githubusercontent.com/vega/vega/master/docs/examples/bar-chart.vg.json\
→˓", \"options\": {\"width\": 800, \"height\": 800}}}}, \"space\": \"OVE_SPACE\", \"h\
→˓": 500, \"w\": 500, \"y\": 0, \"x\": 0}" http://OVE_CORE_HOST:PORT/section

The charts app has a transparent background. If required, a background colour of choice can be set using the Back-
ground Utility provided by OVE.

If the charts app is used to display static charts no further controlling would be required after the chart has been loaded.
The app provides a controller that can used to control interactive charts.

9.3 Controlling the App

The controller of the app can be loaded by accessing the URL http://OVE_APP_CHARTS_HOST:PORT/
control.html?oveSectionId=SECTION_ID.

34 Chapter 9. Charts App

CHAPTER 10

Controller App

This app is a unified controller for all OVE apps. It makes use of transformation APIs exposed by OVE apps and
supports common pan and zoom operations.

10.1 Application State

The state of this app has a format similar to:

{
"mode": "group",
"groupId": "1",
"showTouch": true

}

The mode property is mandatory and should have a value of space, group or geometry. The groupId property
is optional, and must only be provided if mode is group. The showTouch property can be used to specify whether
the Touch overlay is enabled for the viewers.

The app will assume control of the entire space if the mode is set to space. But, if the mode is geometry it will
however be limited to the geometry defined by the x, y, w and h properties set when creating the app. In both cases,
the visible area of the controllers and the touch surfaces, would be limited to the x, y, w and h properties set when
creating the app.

10.2 Loading the App

An instance of the controller can be loaded using the OVE APIs:

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_CONTROLLER_HOST:PORT","states": {"load": {"mode": "space"}}}, "space
→˓": "OVE_SPACE", "h": 500, "w": 500, "y": 0, "x": 0}' http://OVE_CORE_HOST:PORT/
→˓section

35

Open Visualisation Framework

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_CONTROLLER_HOST:PORT\", \"states\": {\"load\": {\"mode\": \
→˓"space\"}}}, \"space\": \"OVE_SPACE\", \"h\": 500, \"w\": 500, \"y\": 0, \"x\": 0}"
→˓http://OVE_CORE_HOST:PORT/section

10.3 Controlling the App

The controller of the app can be loaded by accessing the URL http://OVE_APP_CONTROLLER_HOST:PORT/
control.html?oveSectionId=SECTION_ID. The controller supports panning and zooming operations.

36 Chapter 10. Controller App

CHAPTER 11

HTML App

This app supports displaying HTML web pages using the OVE framework.

11.1 Utilities

The HTML app hosts within it a number of utilities useful for another OVE app or a generic web page:

1. Background Utility

2. Distributed.js Library

11.2 Application State

The state of this app has a format similar to:

{
"url": "http://my.domain"

}

The url, property is mandatory. Optionally, launchDelay and changeAt properties can be provided to control
the initial delay to pre-load the contents of the web page and the precise time at which all clients will change the page
they display.

11.3 Loading the App

A web page can be loaded using the OVE APIs:

Linux/Mac:

37

Open Visualisation Framework

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_HTML_HOST:PORT","states": {"load": {"url": "http://my.domain"}}},
→˓"space": "OVE_SPACE", "h": 500, "w": 500, "y": 0, "x": 0}' http://OVE_CORE_
→˓HOST:PORT/section

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_HTML_HOST:PORT\", \"states\": {\"load\": {\"url\": \"http:/
→˓/my.domain\"}}}, \"space\": \"OVE_SPACE\", \"h\": 500, \"w\": 500, \"y\": 0, \"x\":
→˓0}" http://OVE_CORE_HOST:PORT/section

If the HTML app is used to display static web pages no further controlling would be required after the web page has
been loaded. The app provides a controller and exposes API that can used to control interactive web pages.

11.4 Controlling the App

The controller of the app can be loaded by accessing the URL http://OVE_APP_HTML_HOST:PORT/
control.html?oveSectionId=SECTION_ID.

The app’s API also exposes a refresh operation. This operation can be executed on an individual web page or
across all web pages.

To refresh a web page that is already loaded, using OVE APIs:

curl --request POST http://OVE_APP_HTML_HOST:PORT/operation/refresh

38 Chapter 11. HTML App

CHAPTER 12

Images App

This app supports the display of images using the OVE framework. It is based on OpenSeadragon and supports high
resolution zoomable images. These images can be of any format OpenSeadragon supports such as DZI or Simple
Image.

12.1 Application State

The state of this app has a format similar to:

{
"tileSources": "https://openseadragon.github.io/example-images/highsmith/

→˓highsmith.dzi"
}

The tileSources property points to a DZI file and could be of an XML or JSON format as explained in the
OpenSeadragon documentation.

Optionally, a url property can be set instead of the tileSources property. If it had an extension of .dzi, .xml
or .json the tileSources property will be set to point to this URL. If the URL had any other extension or had
no extension at all, it will be assumed to be a simple image.

The app also supports alternative types of content using other types of tile sources supported by OpenSeadragon.

12.2 Loading the App

An image can be loaded using the OVE APIs:

Linux/Mac:

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_IMAGES_HOST:PORT","states": {"load": {"tileSources": "https://
→˓openseadragon.github.io/example-images/highsmith/highsmith.dzi"}}}, "space": "OVE_
→˓SPACE", "h": 500, "w": 500, "y": 0, "x": 0}' http://OVE_CORE_HOST:PORT/section(continues on next page)

39

https://openseadragon.github.io/
https://openseadragon.github.io/examples/tilesource-dzi/
https://openseadragon.github.io/examples/tilesource-image/
https://openseadragon.github.io/examples/tilesource-image/
https://docs.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/cc645077(v=vs.95)
https://openseadragon.github.io/examples/tilesource-dzi/
https://openseadragon.github.io/#examples-and-features

Open Visualisation Framework

(continued from previous page)

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_IMAGES_HOST:PORT\", \"states\": {\"load\": {\"tileSources\
→˓": \"https://openseadragon.github.io/example-images/highsmith/highsmith.dzi\"}}}, \
→˓"space\": \"OVE_SPACE\", \"h\": 500, \"w\": 500, \"y\": 0, \"x\": 0}" http://OVE_
→˓CORE_HOST:PORT/section

The images app has a transparent background. If required, a background colour of choice can be set using the Back-
ground Utility provided by OVE.

12.3 Controlling the App

The controller of the app can be loaded by accessing the URL http://OVE_APP_IMAGES_HOST:PORT/
control.html?oveSectionId=0. The controller supports panning and zooming of images.

40 Chapter 12. Images App

CHAPTER 13

Maps App

This app supports visualisation of dynamic maps using the OVE framework. It gives users the option of using either
OpenLayers or Leaflet as the underlying mapping library and supports tiled map layers (from Bing, OSM, etc), the
CARTO platform, vector data described in formats such as GeoJSON and custom overlays built using JavaScript
libraries such as D3.js.

The maps app depends on a Map Layers configuration that can be provided within the config.json file (either
embedded or as a URL) or as an environment variable named OVE_MAPS_LAYERS, that points to a URL.

13.1 Application State

The state of this app has a format similar to:

{
"center": ["-11137.70850550061", "6710544.04980525"],
"resolution": "77",
"zoom": "12",
"enabledLayers":["23"],
"scripts":["http://my.domain/customLayer.js"]

}

The center, resolution and zoom properties are mandatory. It is also possible to store these properties in a file
with a .json extension and provide its location using the optional url property. If the url property is provided,
center, resolution and zoom can be omitted from the state configuration.

Optionally, there can be one or more enabled layers and one or more scripts to load custom overlays as seen above.
The enabledLayers property accepts a list of integer values. These integer values correspond to the order (starting
from 0) in which the layers were defined on the Map Layers configuration.

The scripts property accepts a list of URLs of JavaScript files.

41

https://openlayers.org/
https://leafletjs.com/
https://carto.com
http://geojson.org/
https://d3js.org/

Open Visualisation Framework

13.2 Designing Custom Overlays

Custom overlays for the maps app are loaded using a single script as explained above in the Application State section.
However, there may be the requirement to load multiple dependent JavaScript libraries, and also other resources such
as datasets and CSS files. The example below shows what a typical customLayer.js should look like.

let transformURL;

(function () {
if (!window.customLayer) {

let js_files = ["https://d3js.org/d3.v5.min.js", "./script.js"];
let css_files = ["./customLayer.css"];

transformURL = function(url) {
if (url.startsWith('./')) {

return getHostName(true, 'customLayer.js') + '/' + url.slice(2);
} else {

return url;
}

};

js_files = js_files.map(transformURL);
css_files = css_files.map(transformURL);

const first = $('script:first');

js_files.forEach(function (e) {
$('<script>', {src: e}).insertBefore(first);

});

css_files.forEach(function (e) {
$('<link>', {href: e, rel: "stylesheet", type: "text/css"}).

→˓insertBefore(first);
});

setTimeout(function () {
window.map = window.ove.context.map;
init();

}, 2000);

window.customLayer = true;

function getHostName (withScheme, scriptName) {
let scripts = document.getElementsByTagName('script');
for (let i = 0; i < scripts.length; i++) {

if (scripts[i].src.indexOf(scriptName) > 0) {
return scripts[i].src.substring(

withScheme ? 0 : scripts[i].src.indexOf('//') + 2,
scripts[i].src.lastIndexOf('/'));

}
}
return undefined;

};
}

})();

42 Chapter 13. Maps App

Open Visualisation Framework

13.3 Loading the App

A map can be loaded using the OVE APIs:

Linux/Mac:

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_MAPS_HOST:PORT","states": {"load": {"center": ["-11137.70850550061",
→˓ "6710544.04980525"], "resolution": "77", "zoom": "12", "enabledLayers":["23"],
→˓"scripts":["http://my.domain/customLayer.js"]}}}, "space": "OVE_SPACE", "h": 500, "w
→˓": 500, "y": 0, "x": 0}' http://OVE_CORE_HOST:PORT/section

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_MAPS_HOST:PORT\", \"states\": {\"load\": {\"center\": [\"-
→˓11137.70850550061\", \"6710544.04980525\"], \"resolution\": \"77\", \"zoom\": \"12\
→˓", \"enabledLayers\":[\"23\"], \"scripts\":[\"http://my.domain/customLayer.js\"]}}},
→˓ \"space\": \"OVE_SPACE\", \"h\": 500, \"w\": 500, \"y\": 0, \"x\": 0}" http://OVE_
→˓CORE_HOST:PORT/section

13.4 Controlling the App

The controller of the app can be loaded by accessing the URL http://OVE_APP_MAPS_HOST:PORT/
control.html?oveSectionId=SECTION_ID&layers=23. The layers parameter in the URL is optional
and can have more than one value at a time separated by commas. The controller supports panning and zooming of
maps.

13.5 Key considerations when using the App

All considerations when using this app are directly related to its reliability and performance:

1. The maps app tends to load many tiles on screens with higher resolutions and tile servers that are slow and
remote tend to perform very poorly compared to servers that are much faster and locally hosted.

2. JavaScript executed to load custom overlays must not introduce any performance bottlenecks or execute code
that has a negative impact on the reliability of OVE.

3. If the Map Layers configuration is specified as a URL (rather than being directly embedded in the config.
json file), then this must be available before the server-side of this app is launched using PM2 or Docker.

13.3. Loading the App 43

Open Visualisation Framework

44 Chapter 13. Maps App

CHAPTER 14

Networks App

This app supports visualisation of networks with node-link diagrams using the OVE framework. It is based on Sigma,
a JavaScript library dedicated to drawing graphs. This supports datasets specified in Sigma’s JSON format or GEXF.
Sigma supports Canvas, SVG and WebGL rendering.

14.1 Application State

The state of this app has a format similar to:

{
"jsonURL": "/data/sample.json",
"settings": {

"autoRescale": true,
"clone": false,
"defaultNodeColor": "#ec5148"

},
"renderer": "canvas"

}

The jsonURL property should be replaced with with gexfURL property depending on the format in which the dataset
is specified. Optionally, a url property can be set instead of the jsonURL and gexfURL properties. Based on its
extension, it will be used to set either of the jsonURL and gexfURL properties. If it had no extension at all, it will
be ignored.

Information on all available settings can be found in Sigma documentation. The renderer property is optional
and defaults to webgl.

If the content is available on a Neo4j database the state of this app needs to have a format similar to:

{
"neo4j": {

"x": { "min": 0, "max": 100 },
"y": { "min": 0, "max": 100 },

(continues on next page)

45

http://sigmajs.org/
https://gephi.org/gexf/format/
https://github.com/jacomyal/sigma.js/wiki/Settings
https://neo4j.com/docs

Open Visualisation Framework

(continued from previous page)

"db": { "url": "http://localhost:7474", "user": "neo4j", "password": "admin" }
→˓,

"query": "MATCH (n) WHERE n.y >= Y_MIN AND n.y < Y_MAX AND n.x >= X_MIN AND n.
→˓x < X_MAX RETURN n LIMIT 100"

},
"settings": {

"autoRescale": true,
"clone": false,
"rescaleIgnoreSize": true,
"skipErrors": true

},
"renderer": "canvas"

}

A Cypher query should be provided as the query along with the database connection details as the value of the db
property. The min and max values along the x and y axes also needs to be provided if the graph coordinates does not
map to pixel coordinates on the screens.

The optional boundingBoxColor property specifies the colour of the bounding box. The optional
boundingBoxNodeSize property specifies the size of the nodes used to draw the bounding box. Both of these
properties must be defined within the neo4j property.

Information on all available settings can be found in Sigma documentation. The renderer property is optional
and defaults to webgl.

14.2 Loading the App

A node-link diagram can be loaded using the OVE APIs:

Linux/Mac:

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_NETWORKS_HOST:PORT","states": {"load": {"jsonURL": "/data/sample.
→˓json", "settings": { "autoRescale": true, "clone": false, "defaultNodeColor": "
→˓#ec5148"}, "renderer": "canvas"}}}, "space": "OVE_SPACE", "h": 500, "w": 500, "y":
→˓0, "x": 0}' http://OVE_CORE_HOST:PORT/section

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_NETWORKS_HOST:PORT\", \"states\": {\"load\": {\"jsonURL\":
→˓\"/data/sample.json\", \"settings\": { \"autoRescale\": true, \"clone\": false, \
→˓"defaultNodeColor\": \"#ec5148\"}, \"renderer\": \"canvas\"}}}, \"space\": \"OVE_
→˓SPACE\", \"h\": 500, \"w\": 500, \"y\": 0, \"x\": 0}" http://OVE_CORE_HOST:PORT/
→˓section

The networks app has a transparent background. If required, a background colour of choice can be set using the
Background Utility provided by OVE.

If the networks app is used to display static networks no further controlling would be required after the node-link
diagram has been loaded. The app provides a controller and exposes API that can used to control interactive graphs.

46 Chapter 14. Networks App

https://neo4j.com/docs/cypher-refcard/current/
https://github.com/jacomyal/sigma.js/wiki/Settings

Open Visualisation Framework

14.3 Controlling the App

The controller of the app can be loaded by accessing the URL http://OVE_APP_NETWORKS_HOST:PORT/
control.html?oveSectionId=SECTION_ID.

The app’s API also exposes operations such as showOnly, color, labelNodes, neighborsOf and reset.
These operations can be executed on a per-network basis or across all networks.

The implementation makes it possible to query on all properties of nodes and edges. The filters used must confirm to
the OData v3.0 specification and the colors used must have the format rgb(x, y, z) (where x, y, z are integers in
the range 0-255).

Sigma supports chaining of multiple filters and operations such as showOnly and color operations combine node
and edge filters if provided together: which has the effect of a logical AND.

To show only the nodes having a size greater than or equal to 2, using OVE APIs:

curl --request POST http://OVE_APP_NETWORKS_HOST:PORT/operation/showOnly?filter=size
→˓%20ge%202

To reset the network to its original state:

curl --request POST http://OVE_APP_NETWORKS_HOST:PORT/operation/reset

Instructions on invoking all operations are available on the API Documentation, http://
OVE_APP_AUDIO_HOST:PORT/api-docs#operation.

14.3. Controlling the App 47

https://www.odata.org/documentation/odata-version-3-0/odata-version-3-0-core-protocol/#thefiltersystemqueryoption
http://sigmajs.org/

Open Visualisation Framework

48 Chapter 14. Networks App

CHAPTER 15

PDF App

This app supports displaying PDF documents using the OVE framework. It is based on PDF.js, a Portable Document
Format (PDF) viewer that is built with HTML5.

15.1 Application State

The state of this app has a format similar to:

{
"url": "https://raw.githubusercontent.com/mozilla/pdf.js/master/test/pdfs/

→˓TAMReview.pdf",
"settings": {

"scale": 2,
"offset": {

"x": 0,
"y": 0

},
"pageGap": 50,
"startPage": 1,
"endPage": 10,
"scrolling": "horizontal"

}
}

The app accepts a url of a PDF document. All settings are optional. The scale property defines the scale
at which each page is rendered. It can be used to automatically zoom contents of a PDF when it loads. Similarly,
offset can be used to automatically pan contents of a PDF when it loads. The pageGap is the number of pixels
between each adjacent page. The app also accepts a startPage and endPage which can be used to limit the
number of pages rendered. It will automatically compute the number of pages and decide on whether it is best to scroll
horizontally or vertically depending on the dimensions of the section. This behaviour can be overridden by defining
the scrolling property to be either vertical or horizontal.

49

https://github.com/mozilla/pdf.js

Open Visualisation Framework

15.2 Loading the App

A PDF document can be loaded using the OVE APIs:

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_PDF_HOST:PORT","states": {"load": {"url": "https://raw.
→˓githubusercontent.com/mozilla/pdf.js/master/test/pdfs/TAMReview.pdf"}}}, "space":
→˓"OVE_SPACE", "h": 500, "w": 500, "y": 0, "x": 0}' http://OVE_CORE_HOST:PORT/section

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_PDF_HOST:PORT\", \"states\": {\"load\": {\"url\": \"https:/
→˓/raw.githubusercontent.com/mozilla/pdf.js/master/test/pdfs/TAMReview.pdf\"}}}, \
→˓"space\": \"OVE_SPACE\", \"h\": 500, \"w\": 500, \"y\": 0, \"x\": 0}" http://OVE_
→˓CORE_HOST:PORT/section

If the PDF app is used to display static PDF documents no further controlling would be required after the PDF has
been loaded. The app provides a controller that can used to pan and zoom PDF documents.

15.3 Controlling the App

The controller of the app can be loaded by accessing the URL http://OVE_APP_PDF_HOST:PORT/control.
html?oveSectionId=SECTION_ID.

50 Chapter 15. PDF App

CHAPTER 16

Replicator App

This app is capable of replicating content from within an OVE environment, as a space (either entirely or a portion
of it), as a group or as one or more individual sections. It makes it possible to render content at different dimensions
(scaling) while retaining the same aspect ratios. The app also makes it possible for interactive and non-interactive.

The replicator app is instantiated just like any other app, but, it however does not have a controller, and therefore
behaves slightly differently to other apps, at runtime. This app can also display content from remote OVE deployments,
unlike other apps.

16.1 Application State

The state of this app has a format similar to:

{
"mode": "space",
"spaceName": "LocalNine",
"groupIds": [0, 1],
"sectionIds": [2, 3, 4],
"crop": {

"x": 0,
"y": 0,
"w": 100,
"h": 100,

},
"oveHost": "localhost:8080",
"border": "solid gold",
"background": "#222"

}

The mode property is mandatory and should have a value of space, group, or section. If the mode has been
set to space, the spaceName property must usually be provided. An app will replicate its own space (and thereby
provide a mini-map sort of an experience), if the spaceName property is omitted.

51

Open Visualisation Framework

The groupIds property is optional, and must be provided if mode is group. Similarly, the sectionIds property
becomes mandatory if the mode is section. The optional crop property defines the region that will be replicated.
Everything outside this region will not be visible. The content rendered within the app will scale to fit the app’s own
dimensions defined as w and h of the geometry when creating the app. The crop area can have its own geometry that
is independent of the app’s own geometry.

The optional oveHost property must be set in order to connect to a remote OVE environment. The spaceName
must always be provided if oveHost has been set, whenever the mode is space. The optional border property
is useful when the replication is deployed as an overlay (for example, as a mini-map). Setting a border will set an
opaque background to the replication. The optional background property can be set to change the colour and the
opacity of the background. Please note that the border width cannot be set using this property.

The replicator app can only work with one space at a time. If the mode was set to group or section the
spaceName will be taken into consideration. If the spaceName was not provided, the space with the most
number of items will be chosen.

16.2 Loading the App

Content within the OVE framework can be replicated using the OVE APIs:

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_REPLICATOR_HOST:PORT","states": {"load": {"mode": "space",
→˓"spaceName": "LocalNine"}}}, "space": "OVE_SPACE", "h": 500, "w": 500, "y": 0, "x":
→˓0}' http://OVE_CORE_HOST:PORT/section

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_REPLICATOR_HOST:PORT\", \"states\": {\"load\": {\"mode\": \
→˓"space\", \"spaceName\": \"LocalNine\"}}}, \"space\": \"OVE_SPACE\", \"h\": 500, \
→˓"w\": 500, \"y\": 0, \"x\": 0}" http://OVE_CORE_HOST:PORT/section

52 Chapter 16. Replicator App

CHAPTER 17

SVG App

This app supports rendering SVG using the OVE framework. It is based on Tuoris, a middleware for distributed SVG
rendering. An installation of Tuoris is required to use the SVG app. More information on installing Tuoris can be
found in the OVE installation guide.

The SVG app depends on an environment variable named TUORIS_HOST, that points to the URL at which the Tuoris
instance runs.

17.1 Application State

The state of this app has a format similar to:

{
"url": "https://upload.wikimedia.org/wikipedia/commons/6/6c/Trajans-Column-lower-

→˓animated.svg"
}

17.2 Loading the App

An SVG can be loaded using the OVE APIs:

Linux/Mac:

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_SVG_HOST:PORT","states": {"load": {"url": "https://upload.wikimedia.
→˓org/wikipedia/commons/6/6c/Trajans-Column-lower-animated.svg"}}}, "space": "OVE_
→˓SPACE", "h": 500, "w": 500, "y": 0, "x": 0}' http://OVE_CORE_HOST:PORT/section

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_SVG_HOST:PORT\", \"states\": {\"load\": {\"url\": \"https:/
→˓/upload.wikimedia.org/wikipedia/commons/6/6c/Trajans-Column-lower-animated.svg\"}}},
→˓ \"space\": \"OVE_SPACE\", \"h\": 500, \"w\": 500, \"y\": 0, \"x\": 0}" http://OVE_
→˓CORE_HOST:PORT/section

(continues on next page)

53

https://github.com/fvictor/tuoris
https://github.com/fvictor/tuoris
https://github.com/fvictor/tuoris
https://ove.readthedocs.io/en/stable/docs/INSTALLATION.html

Open Visualisation Framework

(continued from previous page)

The SVG app has a transparent background. If required, a background colour of choice can be set using the Background
Utility provided by OVE.

If the SVG app is used to display static SVGs no further controlling would be required after the SVG has been loaded.
The app provides a controller that can used to control interactive SVGs.

17.3 Controlling the App

The controller of the app can be loaded by accessing the URL http://OVE_APP_SVG_HOST:PORT/control.
html?oveSectionId=SECTION_ID.

54 Chapter 17. SVG App

CHAPTER 18

Videos App

This app supports playing videos using the OVE framework. It provides a generic player for any video (HTML5), and
a player based on the YouTube IFrame Player API (YouTube).

18.1 Application State

The state of this app has a format similar to:

{
"url": "http://www.youtube.com/embed/XY3NP4JHXZ4"

}

The player is selected automatically based on the URL: Any YouTube URL uses the YouTube player and all other
URLs use the HTML5 player.

18.2 Loading the App

A video can be loaded using the OVE APIs:

Linux/Mac:

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_VIDEOS_HOST:PORT","states": {"load": {"url": "http://www.youtube.
→˓com/embed/XY3NP4JHXZ4"}}}, "space": "OVE_SPACE", "h": 500, "w": 500, "y": 0, "x": 0}
→˓' http://OVE_CORE_HOST:PORT/section

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_VIDEOS_HOST:PORT\", \"states\": {\"load\": {\"url\": \
→˓"http://www.youtube.com/embed/XY3NP4JHXZ4\"}}}, \"space\": \"OVE_SPACE\", \"h\":
→˓500, \"w\": 500, \"y\": 0, \"x\": 0}" http://OVE_CORE_HOST:PORT/section

55

https://developers.google.com/youtube/iframe_api_reference

Open Visualisation Framework

18.3 Controlling the App

The controller of the app can be loaded by accessing the URL http://OVE_APP_VIDEOS_HOST:PORT/
control.html?oveSectionId=SECTION_ID.

The app’s API also exposes operations such as play, pause, stop, seekTo and bufferStatus. These opera-
tions can be executed on a per-video basis or across all videos.

To play videos using OVE APIs:

curl --request POST http://OVE_APP_VIDEOS_HOST:PORT/operation/play

Instructions on invoking other operations are available on the API Documentation, http://
OVE_APP_AUDIO_HOST:PORT/api-docs#operation.

56 Chapter 18. Videos App

CHAPTER 19

WebRTC App

This app supports one-to-one, one-to-many and many-to-many videoconferencing and screen sharing using the OVE
framework. It is based on OpenVidu, a platform designed to facilitate the addition of WebRTC videoconferencing
into existing web an mobile applications. An installation of OpenVidu is required to use the WebRTC app. More
information on installing OpenVidu can be found in the OVE installation guide.

The WebRTC app depends on an environment variable named OPENVIDU_HOST, that points to the URL at which the
OpenVidu instance runs. The OpenVidu Secret must be provided by setting the OPENVIDU_SECRET environment
variable on the production server or alternatively on the config.json file which must reside only on the production
server.

19.1 Application State

The state of this app has a format similar to:

{
"sessionId": "random",
"maxSessions": 8

}

The sessionId property can be a new or existing OpenVidu session identifier. If this is set to random, the controller
will generate a random sessionId. The maxSessions property is optional. It defines the maximum number
of external users that can connect to this session. It is also possible to provide a url property which contains the
sessionId in it. In such situations, the controller with extract the last path segment and use it as the sectionId.

19.2 Loading the App

The WebRTC app can be loaded using the OVE APIs:

Linux/Mac:

57

https://openvidu.io/
https://openvidu.io/
https://openvidu.io/
https://ove.readthedocs.io/en/stable/docs/INSTALLATION.html
https://openvidu.io/docs/troubleshooting/#4-does-my-app-need-a-server-side
https://openvidu.io/

Open Visualisation Framework

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_WEBRTC_HOST:PORT","states": {"load": {"sessionId": "random"}}},
→˓"space": "OVE_SPACE", "h": 500, "w": 500, "y": 0, "x": 0}' http://OVE_CORE_
→˓HOST:PORT/section

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_WEBRTC_HOST:PORT\", \"states\": {\"load\": {\"sessionId\":
→˓\"random\"}}}, \"space\": \"OVE_SPACE\", \"h\": 500, \"w\": 500, \"y\": 0, \"x\": 0}
→˓" http://OVE_CORE_HOST:PORT/section

19.3 Controlling the App

The controller of the app can be loaded by accessing the URL http://OVE_APP_WEBRTC_HOST:PORT/
control.html?oveSectionId=SECTION_ID. The controller must be used to initiate a videoconferencing
session to which participants can join using an OpenVidu client by providing the Session Id. The OpenVidu
client can be accessed by opening OPENVIDU_HOST on a web browser. The Session Id must be provided as the
name of the call room.

58 Chapter 19. WebRTC App

https://openvidu.io/
https://openvidu.io/

CHAPTER 20

Whiteboard App

This app creates a whiteboard that can be used within the OVE framework. The app creates a collaborative canvas that
accepts handwriting and text input.

The controller UI design of the whiteboard app is based on codoodler.

20.1 Loading the App

A web page can be loaded using the OVE APIs:

Linux/Mac:

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_WHITEBOARD_HOST:PORT"}, "space": "OVE_SPACE", "h": 500, "w": 500, "y
→˓": 0, "x": 0}' http://OVE_CORE_HOST:PORT/section

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_WHITEBOARD_HOST:PORT\"}, \"space\": \"OVE_SPACE\", \"h\":
→˓500, \"w\": 500, \"y\": 0, \"x\": 0}" http://OVE_CORE_HOST:PORT/section

20.2 Controlling the App

The controller of the app can be loaded by accessing the URL http://OVE_APP_WHITEBOARD_HOST:PORT/
control.html?oveSectionId=SECTION_ID.

59

https://github.com/pubnub/codoodler

Open Visualisation Framework

60 Chapter 20. Whiteboard App

CHAPTER 21

Open Visualisation Environment - Services

Open Visualisation Environment (OVE) is implemented based on a microservices architecture. All non-core function-
ality are implemented as a separate set of microservices, collectively known as OVE Services:

• Persistence (In-Memory) - Provides in-memory persistence for the OVE framework.

OVE needs to be installed before using OVE Services. The OVE Documentation provides installation instructions and
a user guide.

61

https://github.com/ove/ove
https://ove.readthedocs.io/en/stable/
https://ove.readthedocs.io/en/stable/docs/INSTALLATION.html
https://ove.readthedocs.io/en/stable/docs/USAGE.html

Open Visualisation Framework

62 Chapter 21. Open Visualisation Environment - Services

CHAPTER 22

OVE Persistence Service - In-Memory

This service provides persistence for the OVE framework using an in-memory storage implementation. This is also
the most straightforward persistence service implementation and is not highly available.

22.1 Registering a Persistence Service

All persistence services for OVE implements a common API and can be registered in the same way. However, the
persistence services may have their own configurations, concerning their underlying storage implementations. Such
configuration should be made according to the respective persistence service’s documentation.

A persistence service can be registered with OVE or any OVE App using the following API:

Linux/Mac:

curl --header "Content-Type: application/json" --request POST --data '{"url": "http://
→˓OVE_PERSISTENCE_SERVICE_HOST:PORT"}' http://OVE_CORE_OR_APP_HOST:PORT/persistence

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"url\": \
→˓"http://OVE_PERSISTENCE_SERVICE_HOST:PORT\"}" http://OVE_CORE_OR_APP_HOST:PORT/
→˓persistence

A persistence service can be unregistered from OVE or any OVE App using the following API:

Linux/Mac/Windows:

curl --header "Content-Type: application/json" --request DELETE http://OVE_CORE_OR_
→˓APP_HOST:PORT/persistence

63

Open Visualisation Framework

64 Chapter 22. OVE Persistence Service - In-Memory

CHAPTER 23

Distributed.js Library

This is a JavaScript library for distributing JavaScript function calls and variables from controllers to viewers. The
setDistributed function distributes the execution of functions and the watch function propagates updates on
one or more properties from controller to viewers.

This library also exposes a number of helpers, one of which is THREE.Distributed, which is library for distributing
Three.js functionality using the Distributed.js library.

65

https://raw.githubusercontent.com/ove/ove-apps/master/packages/ove-app-html/src/libs/distributed.js
https://raw.githubusercontent.com/ove/ove-apps/master/packages/ove-app-html/src/libs/distributed/three.js

Open Visualisation Framework

66 Chapter 23. Distributed.js Library

CHAPTER 24

Background Utility

If a web page or an app has a transparent background by design, a background colour of choice can be set using this
utility:

Linux/Mac:

curl --header "Content-Type: application/json" --request POST --data '{"app": {"url":
→˓"http://OVE_APP_HTML_HOST:PORT","states": {"load": {"url": "/data/background/index.
→˓html?background=COLOUR"}}}, "space": "OVE_SPACE", "h": 500, "w": 500, "y": 0, "x":
→˓0}' http://OVE_CORE_HOST:PORT/section

Windows:

curl --header "Content-Type: application/json" --request POST --data "{\"app\": {\
→˓"url\": \"http://OVE_APP_HTML_HOST:PORT\", \"states\": {\"load\": {\"url\": \"/data/
→˓background/index.html?background=COLOUR\"}}}, \"space\": \"OVE_SPACE\", \"h\": 500,
→˓\"w\": 500, \"y\": 0, \"x\": 0}" http://OVE_CORE_HOST:PORT/section

The background colour can be specified either as a keyword or hexadecimal value such as Black or #f0f0f0.

67

https://developer.mozilla.org/en-US/docs/Web/CSS/background-color

Open Visualisation Framework

68 Chapter 24. Background Utility

CHAPTER 25

MapLayers.json File

The maps app can be configured by embedding the map layers configuration within the config.json file, or by
providing a URL that points to a MapLayers.json file. The format of the JSON configuration remains the same in
either of these two approaches.

The MapLayers.json file contains an array of map layers. There are two different configuration formats for
OpenLayers and Leaflet. These as described below. The mapping library is selected according to the configuration
format of the first layer and assumes all other layers follow the same format. If no layers were defined, OpenLayers
will be selected as the mapping library.

By default, the config.json exposes layers in the OpenLayers configuration format. To use Leaflet, edit the
config.json file and replace the layers property with layers_ol and the layers_leaflet property with
layers.

25.1 OpenLayers configuration format

The configuration format for OpenLayers has a structure similar to:

[
{

"type": "ol.layer.Tile",
"visible": false,
"wms": false,
"source": {

"type": "ol.source.OSM",
"config": {

"crossOrigin": null,
"url": "https://{a-c}.tile.thunderforest.com/transport/{z}/{x}/{y}.png

→˓"
}

}
},
{

(continues on next page)

69

https://openlayers.org/
https://leafletjs.com/
https://openlayers.org/
https://openlayers.org/
https://leafletjs.com/
https://openlayers.org/

Open Visualisation Framework

(continued from previous page)

"type": "ol.layer.Vector",
"visible": false,
"wms": true,
"source": {

"type": "ol.source.Vector",
"config": {

"url": "/data/sampleGeo.json"
}

},
"style": {

"fill": {
"color": "#B29255"

},
"stroke": {

"color": "#715E3A",
"width": 4

}
},
"opacity": 0.7

}
]

The library supports two types of map layers, ol.layer.Tile and ol.layer.Vector.

Both types of layer have a visible property that describes whether the layer is visible by default and a wms property
which describes whether the layer is a displaying data from a Web Map Service. These properties have Boolean
values.

The layers also have a common source property, but their contents differ. The source of a vector layer always must
have a type equal to ol.source.Vector, and the url of the config property must point to a GeoJSON file.
The source of a tile layer can be any layer source for tile data supported by OpenLayers such as ol.source.OSM
or ol.source.BingMaps. The config object is passed as an argument of the constructor for the specified source,
and its properties depend on which source is used; more information can be found in the OpenLayers documentation.

Unlike tile layers, vector layers have two additional properties, style and opacity which can be used to customise
their appearance. The opacity property has a numeric value between 0 and 1, and the style property accepts a
JSON structure with two properties (fill and stroke) within it. These correspond to configuration provided when
creating ol.style.Fill and ol.style.Stroke objects, respectively.

25.1.1 Using the CARTO platform with OpenLayers

The configuration formats for using CARTO platform with OpenLayers have structures similar to:

[
{

"type": "ol.layer.Tile",
"visible": false,
"wms": false,
"source": {

"type": "ol.source.XYZ",
"config": {

"url": "http://api.cartocdn.com/base-dark/{z}/{x}/{y}.png"
}

}
},
{

(continues on next page)

70 Chapter 25. MapLayers.json File

https://www.opengeospatial.org/standards/wms
http://geojson.org/
https://geoadmin.github.io/ol3/apidoc/ol.source.html
https://geoadmin.github.io/ol3/apidoc/ol.source.OSM.html
https://geoadmin.github.io/ol3/apidoc/ol.source.BingMaps.html
http://geoadmin.github.io/ol3/apidoc/ol.source.html
http://geoadmin.github.io/ol3/apidoc/ol.style.Fill.html
http://geoadmin.github.io/ol3/apidoc/ol.style.Stroke.html
https://carto.com
https://openlayers.org/

Open Visualisation Framework

(continued from previous page)

"type": "ol.TorqueLayer",
"visible": false,
"wms": false,
"source": {

"user": "viz2",
"table": "ow",
"zIndex": 100,
"cartocss": "Map { -torque-time-attribute: \"date\"; -torque-aggregation-

→˓function: \"count(cartodb_id)\"; -torque-frame-count: 760; -torque-animation-
→˓duration: 15; -torque-resolution: 2 } #layer { marker-width: 3; marker-fill-
→˓opacity: 0.8; marker-fill: #FEE391; comp-op: \"lighten\"; [value > 2] {
→˓marker-fill: #FEC44F; } [value > 3] { marker-fill: #FE9929; } [value > 4] {
→˓marker-fill: #EC7014; } [value > 5] { marker-fill: #CC4C02; } [value > 6] {
→˓marker-fill: #993404; } [value > 7] { marker-fill: #662506; } [frame-offset =
→˓1] { marker-width: 10; marker-fill-opacity: 0.05;} [frame-offset = 2] { marker-
→˓width: 15; marker-fill-opacity: 0.02;} }"

}
},
{

"type": "ol.layer.Tile",
"visible": false,
"wms": false,
"source": {

"type": "ol.source.CartoDB",
"config": {

"account": "documentation",
"config": {

"layers": [{
"type": "cartodb",
"options": {

"cartocss_version": "2.1.1",
"cartocss": "#layer { polygon-fill: #1E90FF; polygon-

→˓opacity: 0.6;}",
"sql": "select * from european_countries_e where name =

→˓'France'"
}

}]
}

}
}

}
]

The implementation supports the use of CARTO base maps, Torque.js and the CartoDB source of OpenLayers. These
can be used to display base map tiles, animations and vector overlays.

The configuration of the source property of the ol.TorqueLayer type (which is similar to L.TorqueLayer)
is explained in the Torque.js reference documentation. The configuration of the ol.source.CartoDB is explained
in the OpenLayers API documentation.

To see CARTO platform examples in OVE, load the controller by accessing the URL http://
OVE_APP_MAPS_HOST:PORT/control.html?oveSectionId=SECTION_ID&layers=2,3,
4&state=World. To learn more, see examples on using OpenLayers with the CARTO Platform and the
example on using Torque.js with OpenLayers.

25.1. OpenLayers configuration format 71

https://carto.com
https://carto.com/developers/torque-js/
https://openlayers.org/en/latest/apidoc/module-ol_source_CartoDB-CartoDB.html
https://carto.com/developers/torque-js/reference/#ltorquelayer
https://openlayers.org/en/latest/apidoc/module-ol_source_CartoDB-CartoDB.html
https://carto.com
https://openlayers.org/en/latest/examples/cartodb.html
https://carto.com/developers/torque-js/examples/#example-navy

Open Visualisation Framework

25.2 Leaflet configuration format

The configuration format for Leaflet has a structure similar to:

[
{

"type": "L.tileLayer",
"visible": false,
"wms": false,
"url": "http://services.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/

→˓MapServer/tile/{z}/{y}/{x}.jpg"
},
{

"type": "L.geoJSON",
"visible": false,
"wms": false,
"data": [
{

"type": "LineString",
"coordinates": [[-100, 40], [-105, 45], [-110, 55]]

},
{

"type": "LineString",
"coordinates": [[-105, 40], [-110, 45], [-115, 55]]

}],
"options": {

"style": {
"fill": true,
"fillColor": "#B29255",
"fillOpacity": 0.7,
"color": "#715E3A",
"weight": 4,
"opacity": 0.7

}
}

}
]

The library supports raster and vector map layers as well as geoJSON layers. Unlike OpenLayers, they are not grouped
into two significant layers. A complete catalogue of all Leaflet map layers are available in their documentation.

Both types of layer have a visible property that describes whether the layer is visible by default and a wms property
which describes whether the layer is a displaying data from a Web Map Service. These properties have Boolean
values.

Each layer has its own properties. L.tileLayer must have a url property. All vector layers must have a bounds
property. L.imageOverlay and L.videoOverlay must have a url as well as a bounds property. All layers
accept an optional options property as well. All of these combinations are explained in the Leaflet documentation.

Unlike in OpenLayers, Leaflet expects GeoJSON to be embedded and defined using a data property. Like other
layers it also accepts an optional options property. The style property is defined within this options property
as seen above. opacity is a part of the style property.

25.2.1 Using the CARTO platform with Leaflet

The configuration formats for using CARTO platform with Leaflet have structures similar to:

72 Chapter 25. MapLayers.json File

https://leafletjs.com/
https://openlayers.org/
https://leafletjs.com/
https://leafletjs.com/reference.html#layer
https://www.opengeospatial.org/standards/wms
https://leafletjs.com/reference.html#layer
https://openlayers.org/
https://leafletjs.com/
http://geojson.org/
https://carto.com
https://leafletjs.com/

Open Visualisation Framework

[
{

"type": "L.tileLayer",
"visible": false,
"wms": false,
"url": "http://{s}.api.cartocdn.com/base-dark/{z}/{x}/{y}.png"

},
{

"type": "L.TorqueLayer",
"visible": false,
"wms": false,
"source": {

"user": "viz2",
"table": "ow",
"zIndex": 100,
"cartocss": "Map { -torque-time-attribute: \"date\"; -torque-aggregation-

→˓function: \"count(cartodb_id)\"; -torque-frame-count: 760; -torque-animation-
→˓duration: 15; -torque-resolution: 2 } #layer { marker-width: 3; marker-fill-
→˓opacity: 0.8; marker-fill: #FEE391; comp-op: \"lighten\"; [value > 2] {
→˓marker-fill: #FEC44F; } [value > 3] { marker-fill: #FE9929; } [value > 4] {
→˓marker-fill: #EC7014; } [value > 5] { marker-fill: #CC4C02; } [value > 6] {
→˓marker-fill: #993404; } [value > 7] { marker-fill: #662506; } [frame-offset =
→˓1] { marker-width: 10; marker-fill-opacity: 0.05;} [frame-offset = 2] { marker-
→˓width: 15; marker-fill-opacity: 0.02;} }"

}
},
{

"type": "L.cartoDB",
"visible": false,
"wms": false,
"source": {

"apiKey": "default_public",
"username": "cartojs-test",
"layers": [{

"cartocss": "#layer { marker-width: 7; marker-fill: #EE4D5A; marker-
→˓line-color: #FFFFFF; }",

"sql": "SELECT * FROM ne_10m_populated_places_simple WHERE adm0name =
→˓'United Kingdom'"

}]
}

}
]

The implementation supports the use of CARTO base maps, Torque.js and CARTO.js. These can be used to display
base map tiles, animations and vector overlays.

The configuration of the source property of the L.TorqueLayer type is explained in the Torque.js reference
documentation. The source property of the L.cartoDB type includes the apiKey and username required by
the CARTO.js client and a layers property which defines a list of carto.layer.Layer objects.

To see CARTO platform examples in OVE, load the controller by accessing the URL http://
OVE_APP_MAPS_HOST:PORT/control.html?oveSectionId=SECTION_ID&layers=2,3,
4&state=World. To learn more, see examples on using CARTO.js and the example on using Torque.js
with Leaflet.

25.2. Leaflet configuration format 73

https://carto.com
https://carto.com/developers/torque-js/
https://carto.com/developers/carto-js/
https://carto.com/developers/torque-js/reference/#ltorquelayer
https://carto.com/developers/torque-js/reference/#ltorquelayer
https://carto.com/developers/carto-js/reference/#cartoclient
https://carto.com/developers/carto-js/reference/#cartolayerlayer
https://carto.com
https://carto.com/developers/carto-js/examples/
https://carto.com/developers/torque-js/examples/#example-navy-ships-leaflet
https://carto.com/developers/torque-js/examples/#example-navy-ships-leaflet

	Basic Concepts
	Runtime environment
	Communication between components
	Managing sections
	Managing state

	High availability of server-side application components

	Installing OVE
	Installation by running OVE installers
	Prerequisites
	Downloading the OVE installers
	Building installers for non-supported platforms
	Running the installers
	Resolving port conflicts
	Environment variables
	Using your own certificates for OpenVidu

	Starting and stopping the OVE Docker applications

	Installation from source code
	Prerequisites
	Downloading source code
	Compiling source code for a local Node.js environment
	Starting and stopping OVE using the PM2 process manager

	Compiling source code for a Docker environment
	Starting and stopping the OVE Docker containers

	Running OVE

	Using OVE
	Setting up OVE
	Launching browsers
	Launching OVE Apps
	Launching OVE Apps using OVE UI
	Launching OVE Apps using the Python Client Library
	Launching OVE Apps using OVE Core APIs

	Controlling OVE Apps and designing interactive visualisations

	Potential Pitfalls
	Technical considerations
	Ergonomic considerations
	User interaction considerations

	Developing OVE Applications
	Application structure
	The index.html file
	Logging
	The index.js file and server-side application initialization
	The swagger-extensions.yaml file
	Server-side Helper methods

	Clint-side application initialization
	Resizing
	Client-side Helper methods

	The OVE object
	Handling state
	Interpreting geometry
	Communicating via WebSockets
	Debugging Communication via WebSockets
	Communicating within a web browser

	Embedding OVE within an existing web application

	Open Visualisation Environment - Apps
	Alignment App
	Loading the App
	Controlling the App

	Audio App
	Application State
	Loading the App
	Controlling the App

	Charts App
	Application State
	Loading the App
	Controlling the App

	Controller App
	Application State
	Loading the App
	Controlling the App

	HTML App
	Utilities
	Application State
	Loading the App
	Controlling the App

	Images App
	Application State
	Loading the App
	Controlling the App

	Maps App
	Application State
	Designing Custom Overlays
	Loading the App
	Controlling the App
	Key considerations when using the App

	Networks App
	Application State
	Loading the App
	Controlling the App

	PDF App
	Application State
	Loading the App
	Controlling the App

	Replicator App
	Application State
	Loading the App

	SVG App
	Application State
	Loading the App
	Controlling the App

	Videos App
	Application State
	Loading the App
	Controlling the App

	WebRTC App
	Application State
	Loading the App
	Controlling the App

	Whiteboard App
	Loading the App
	Controlling the App

	Open Visualisation Environment - Services
	OVE Persistence Service - In-Memory
	Registering a Persistence Service

	Distributed.js Library
	Background Utility
	MapLayers.json File
	OpenLayers configuration format
	Using the CARTO platform with OpenLayers

	Leaflet configuration format
	Using the CARTO platform with Leaflet

